• Title/Summary/Keyword: Aeronautical study

Search Result 1,638, Processing Time 0.019 seconds

A Study on Improvement of UAV Pilot Licensing System (무인비행장치 조종 자격증명제도 개선에 관한 고찰)

  • Park, Wontae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.79-84
    • /
    • 2017
  • This study suggests the ways of improving the training and licensing system of unmanned aerial vehicles (UAVs), which are drawing attention as a future growth industry, through interviews with domestic experts and examples from advanced countries. In order to improve the system, it was suggested to establish a clear concept about unmanned aerial vehicle pilot, to implement a system to obtain and maintain the UAV pilot license, to develop and supply standard textbooks for acquiring certification, and to prepare certification standards for flight simulators.

A Study on Variable Damping Semi-Passive Vibration Isolation for Enhancing Pointing Performance of On-Board Payload (위성 탑재채 지향성능 향상을 위한 가변댐핑 반수동 진동제어에 관한 연구)

  • OH, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.533-538
    • /
    • 2007
  • A semi-passive vibration isolation control method for enhancing pointing performance of on-board payload has been derived, and its effectiveness has been evaluated through numerical simulation. The semi-passive control law proposed in this study was derived so as to obtain the same performance as a high passive damping at low frequencies and obtain the same performance as a passive low damping at high frequencies. In the numerical simulation, the intended vibration isolation performance of the semi-passive control law has been obtained.

Experimental Study on Flapping of a Coleoptera (딱정벌레목 곤충의 날갯짓에 대한 실험적 연구)

  • Yoo, Yong-Hoon;Jang, Doo-Hwan;Park, Hoon-Cheol;Byun, Yong-Hwan;Byun, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • A flow visualization is conducted to investigate a flight characteristics of a Coleoptera and an effect of flapping elytra was considered in this study. Also the movements of outer wing(elytra) and inner wing is analyzed using High Speed Camera. As a result of this experiment, in case of flapping insect, three mechanisms to generate lift is confirmed. A small movement of outer wing(elytra) is confirmed and the effect of outer wing(elytra) is estimated.

Real-time midcourse guidance with consideration of the impact condition

  • Song, Eun-Jung;Joh, Mi-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.26-36
    • /
    • 2003
  • The objective of this study is to enhance neural-network guidance to consider the impact condition. The optimal impact condition in this study is defined as an head-on attack. Missile impact-angle error, which is a measure of the degree to which the missile is not steering for a head-on attack, can also have an influence on the final miss distance. Therefore midcourse guidance is used to navigate the missile, reducing the deviation angle from head on, given some constraints on the missile g performance. A coordinate transformation is introduced to simplify the three-dimensional guidance law and, consequently, to reduce training data. Computer simulation results show that the neural-network guidance law with the coordinate transformation reduces impact-angle errors effectively.

A Study on HAUSAT-1 Satellite Fault-Tolerant System Architecture Design

  • Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.37-50
    • /
    • 2003
  • A next generation small satellite HAUSAT-1, the first picosatellite developed in Korea, is being developed as one of the international CubeSat program by Space System Research Lab. of Hankuk Aviation University. A fault-tolerant incremental design methodology has been addressed in this paper. In this study, the effect of system redundancy on reliability was in details analyzed in accordance with the implementation of fault-tolerant system. Four different system recovery levels are proposed for HAUSAT-1 fault-tolerant system optimization. As a result, the HAUSAT-1 fault-tolerant system architecture design and reliability analysis has acquired about 11% reliability improvement.

Prediction of Transonic Buffet Onset for a Supercritical Airfoil with Shock-Boundary Layer Interactions Using Navier-Stokes Solver

  • Chung, Injae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • To predict the transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions, a practical steady approach has been proposed. In this study, it is assumed that the airfoil flow is steady even when buffet onset occurs. Steady Navier-Stokes computations are performed on the supercritical airfoil. Using the aerodynamic parameters calculated from Navier-Stokes solver, various steady approaches for predicting buffet onset are discussed. Among the various steady approaches considered in this study, Thomas' criterion based on Navier-Stokes computation has shown to be the most appropriate indicator of identifying the buffet onset for a supercritical airfoil with shock-boundary layer interactions. Good agreements have been obtained compared with the results of unsteady transonic wind tunnel tests. The present method is shown to be reliable and useful for transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions in terms of practical engineering viewpoint.

Orbit Determination of Korea Regional Navigation Satellite System Using Inter-Satellite Links and Ground Observations

  • Choi, Jungmin;Oh, Hyungjik;Park, Chandeok;Park, Sang-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.327-333
    • /
    • 2017
  • This study presents the orbit determination (OD) of a candidate Korea Regional Navigation Satellite System (KRNSS) using both inter-satellite links (ISLs) and ground observations. The candidate constellation of KRNSS is first introduced. The OD algorithm based on both ISL and ground observation is developed, and consists of three main components: dynamic model for Korean navigation satellites, measurement model for ISLs and ground observations, and the batch least-square filter for estimating OD parameters. As numerical simulations are performed to analyze the OD performances, the present study focuses on investigating the effects of ISL measurements on the OD accuracy of KRNSS. Simulation results show that the use of ISLs can considerably enhance the OD accuracy to one meter (design preference) under certain distributions of ground stations.

Prediction of Effective Material Properties for Triaxially Braided Textile Composite

  • Geleta, Tsinuel N.;Woo, Kyeongsik;Lee, Bongho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.222-235
    • /
    • 2017
  • In this study, finite element modeling was used to predict the material properties of tri-axially braided textile composite. The model was made based on an experimental test specimen which was also used to compare the final results. The full interlacing of tows was geometrically modelled, from which repeating parts that make up the whole braid called unit cells were identified based on the geometric and mechanical property periodicity. In order to simulate the repeating nature of the unit cell, periodic boundary conditions were applied. For validation of the method, a reference model was analyzed for which a very good agreement was obtained. Material property calculation was done by simulating uniaxial and pure shear tests on the unit cell. The comparison of these results with that of experimental test results showed an excellent agreement. Finally, parametric study on the effect of number of plies, stacking type (symmetric/anti-symmetric) and stacking phase shift was conducted.

Study of Hybrid Optimization Technique for Grain Optimum Design

  • Oh, Seok-Hwan;Kim, Yong-Chan;Cha, Seung-Won;Roh, Tae-Seong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.780-787
    • /
    • 2017
  • The propellant grain configuration is a design variable that determines the shape and performance of a solid rocket motor. Grain configuration variables have complicated effects on the motor performance; so the global optimization problem has to be solved in order to design the configuration variables. The grain performance has been analyzed by means of the grain burn-back and internal ballistic analysis, and the optimization technique searches for the configuration variables that satisfy the requirements. The deterministic and stochastic optimization techniques have been applied for the grain optimization, but the results are imperfect. In this study, the optimization design of the configuration variables has been performed using the hybrid optimization technique, which combines those two techniques. As a result, the hybrid optimization technique has proved to be efficient for the grain optimization design.

Study on Anomalous Electron Diffusion in the Hall Effect Thruster

  • Kwon, Kybeom;Walker, Mitchell L.R.;Mavris, Dimitri N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.320-334
    • /
    • 2014
  • Over the last two decades, numerous experimental and numerical efforts have examined physical phenomena in plasma discharge devices. The physical mechanisms that govern the anomalous electron diffusion from the cathode to the anode in the Hall Effect Thruster (HET) are not fully understood. This work used 1-D numerical method to improve our understanding and gain insight into the effect of the anomalous electron diffusion in the HET. To this end, numerical solutions are compared with various experimental HET performance measurements and the effects of anomalous electron diffusion are analyzed. The relationships between the anomalous electron diffusion and important parameters of the HET are also studied quantitatively. The work identifies the cathode mass flow rate fraction, radial magnetic field distribution, and discharge voltage as significant factors that affect anomalous electron diffusion. Additionally, the study demonstrates a computational process to determine the radial magnetic field distribution required to achieve specific thruster performance goals.