• Title/Summary/Keyword: Aerodynamic sound

Search Result 127, Processing Time 0.025 seconds

Analysis on Performance and Noise Characteristics of the Design Parameters of a Cross-Flow Fan and its Optimization (횡류홴 설계 인자들의 성능/소음 특성 해석 및 최적화)

  • Cho Yong;Moon Young J.;Kwak Jiho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.767-770
    • /
    • 2002
  • The performance and noise characteristics of the design parameters of a cross-flow fan are investigated by computational methods. The incompressible Wavier-Stokes equations in moving coordinates are time-accurately solved for obtaining the pressure fluctuations due to the aerodynamic interactions between the impeller blades and the stabilizer, and sound pressure is then computed by the Ffowcs Williams-Hawkings equation. Design parameters of the cross-flow fan include blade setting angle, exit-diffusion angle, and stabilizer installation angle. Also, an optimization of the aforementioned design parameters has been peformed using the Taguchi method.

  • PDF

The analysis of flow over the bridge using preconditioned Navier-Stokes code (예조건화 Navier-Stokes 코드를 이용한 교각 유동해석)

  • Yoo, Il-Yong;Lee, Seung-Soo;Park, Si-Hyong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

Flow Noise in the Outdoor Unit of an Air-conditioner (에어컨 실외기에서의 유동소음)

  • 이승배;이재환;김휘중;최진규;진성훈;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.594-601
    • /
    • 1997
  • Propeller fans are commonly equipped in outdoor units of air-conditioners to provide effective cooling in a dried heat exchanger. A new design technique was developed to satisfy requirements of aerodynamic and aeroacoustic performance, which employs the intersection method of two cylinders for mean camber line. Three proto-types of propeller fan including Palm-Shaped, Highly-Swept(PSHS) fan (proto 3)were not only to provide low lift forces for dipole sound, but also to reduce the organized tip vortices interacting with the fan guide causing narrow-banded rotating instabilities. Cross-correlation technique was applied to study flow noise source characteristics for three proto-type fans designed. The cross-correlations between a microphone at far field and a hot-wire sensor at near field show that flows near hub region of proto 3 fan are less organized and the flow structures especially at high flow rate coefficients for proto 3 fan are less correlated with noise generated than other proto-types fans.

  • PDF

Flow Field Analysis of a Centrifugal Fan (원심형 홴의 유동해석에 관한 연구)

  • Shin, Dong-Shin;Im, Jong-Soo;Kim, Chang-Seong;Rho, O-Hyun;Lee, Soo-Gab
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.43-49
    • /
    • 1999
  • Flow field and near-field noise of a centrifugal fan has been studied with an efficient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed to be two-dimensional. Most of the compressible studies have been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in terms of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF

The Influence of the Intake Regions of the Cross-flow fan on the Performance and Fan Noise (횡류팬 흡입구의 위치가 성능 및 소음 특성에 미치는 영향)

  • Kim, Jin Baek;Choi, Weon Seok;Lee, Jai Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.78-82
    • /
    • 2004
  • The cross-flow fan which is used for air-conditioner indoor units were studied experimentally. The recent trend shows that the room air-conditioners need to be good-looking. According to the visual design concepts the intake regions of the fan can vary, which leads to the loss of the performance and the increase of the noise of the fan. In order to optimize the performance of the fan and minimize the aerodynamic noise for the system, the performance characteristics and the noise of the cross-flow fan have been investigated at the various conditions of the intake region of the unit.

  • PDF

A Design Study of Aerodynamic Noise Reduction in Centrifugal Compressor Part I : Performance Analysis and Noise Prediction (원심압축기의 공력소음 저감에 관한 설계연구 Part I : 성능해석 및 소음예측)

  • Sun, Hyosung;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.785-791
    • /
    • 2004
  • The objective of this research is to suggest anoise prediction method for a centrifugal compressor. It is focused on the Blade Passing Frequency component which is regarded as the main part of the rotating impeller noise. Navier-Stokes solver is used to simulate the flow-field of the centrifugal compressor, and the time-dependent pressure data are calculated to perform the near-field noise prediction by using Ffowcs Williams - Hawkings formulation. Indirect Boundary Element Method is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and the sound pressure level prediction results are compared with the experimental data.

Noise Analysis and Reduction Methods of the All-in One Window Ventilation System (창호일체형 환기장치의 소음분석 및 저감방안)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.43-55
    • /
    • 2013
  • The window ventilation system based on the heat recovery device was developed which make air ventilation possible without opening the windows. However, mechanical and aerodynamic noises were come to pass which annoyed people in rooms. In the present study, noise of new window ventilation system was measured in both general room and anechoic chamber. Also, the noise path was detected to find cause of noise generation and vulnerable area of the device. Sound absorptive and insulation materials were applied to mitigate the noise. Finally, an alternative noise control method was suggested which can satisfy with the indoor noise standards. As a result, it was shown that the cause of noise was the low transmission loss in the ventilation system. As a result, it was shown that the main noise source of the ventilation system was the blower and the major cause of noise was the low transmission loss of the ventilation system. It is also concluded that the noise levels complies with the noise standards of 40 dBA when 2 mm rubber sheet is applied inside the ventilation system.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

Thickness and Loading Noise from Helicopter Rotor at various Pitch Angles (피치각 변화에 따른 헬리콥터 로터에서의 두께 및 하중소음 방사)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.868-874
    • /
    • 2007
  • Noises from the helicopter rotor model are calculated numerically at various pitch angles. The aerodynamic data are calculated by using prescribed wake model and unsteady panel method. The distribution of aerodynamic loads on the blade surface are obtained from $0^{\circ}$ to $9^{\circ}$ pitch angles with equiangular increments of $1.5^{\circ}$. Although thickness noise is not related to the change of pitch angles, loading noise level increases about 3~4dBA every $1.5^{\circ}$ increment of pitch angle. The additive noise level shows sufficient value to perceive the loudness. From the result of directivity pattern the sound level at the lower region of the blade disc plane is higher than that of the upper region.

Application of Airfoil Impeller for Enhancement of Aerodynamic Performance of High Speed Centrifugal Fan (고속 원심홴의 공력성능 향상을 위한 에어포일 임펠러 적용)

  • Park, Kyung Hyun;Park, Chang Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.321-327
    • /
    • 2016
  • This paper presents the application of airfoil impeller for enhancement of aerodynamic performance of a high speed centrifugal fan. Three airfoil impellers are proposed, considering the maximum thickness and the location of maximum thickness of the airfoil. C4 airfoil thickness distribution is applied to the three airfoil impellers. The impellers are evaluated using CFD (computational fluid dynamics) and suction power test. From the results, it is confirmed that flow separations on the pressure side of the impeller blades and the pressure side of diffuser blades are reduced when airfoil blade is applied to the impellers. It is also confirmed that with the centrifugal fan having airfoil impellers, there is an increase in fan efficiency by approximately 3% and reduction in specific sound level by approximately 1.3 dB(A).