• Title/Summary/Keyword: Aerodynamic control

Search Result 489, Processing Time 0.024 seconds

Prediction of the Thrust Center Movement Due To Rocket Nozzle Deflection (로켓 노즐 변위에 따른 추력 중심 변화 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.136-145
    • /
    • 2007
  • A computation was made to predict the movement of the thrust center position due to the rocket nozzle deflection. Three dimensional computations were done for the nozzle deflection angles of 0/1/3 degrees, and the oscillation of aerodynamic coefficients, not observed for the axisymmetric cases, was encountered. The position of the thrust center was found to be at -16 mm and -4 mm for the deflection angles of 1 and 3 degrees, respectively, and it can be concluded that the thrust center movement due to nozzle deflection is negligible. In addition to the computational results, the mechanism of thrust generation in a rocket engine is described with a brief mathematical derivation as it is sometimes mistaken. Also presented are some descriptions on the problem of pressure center definition for symmetric cases such as a rocket external flow problem and the nozzle deflection case.

  • PDF

Dynamic Stability Flight Test for Small Aircraft using Modified Maximum Likelihood Estimation (최대공산 추정법을 이용한 항공기 동안정성 비행시험)

  • Lee, Sang-Jong;Park, Jeong-Ho;Chang, Jae-Won;Park, Il-Kyung;Kim, Keun-Taek;Seong, Kie-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • This technical paper describes and summarizes the flight test results for the longitudinal and lateal-directional dynamic stability characteristics. The target aircraft is the 4-seat carnard type aircraft, FireFly, which has been developed by KARI. Airborne sensors and real-time telemetry system are constructed to obtain the flight test data. The dynamic stability characteristics should be analyzed and tested by estimaitng the aerodynamic parameters in the dymaic equations of motion. The maximum likelihood estimation technique has been applied to the flight data from chirp, 3211, and doublet control inputs.

Development of the Evaluation Method for Aerodynamic Noise Caused by Pressure Pulsation in the Turbocharged Diesel Engine (디젤엔진 공기과급기의 압력맥동 기인소음 평가기법 개발)

  • Lee, Jong-Kyu;Kim, Hyung-Jin;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.918-922
    • /
    • 2007
  • Aero-pulsation noise, generally caused by geometric asymmetry of a rotating device, is considerable source of annoyance in passenger cars using the turbocharged diesel engine. Main source of this noise is the compressor wheel in the turbocharger system, and can be reduced by after-treatment such as silencers, but which may increase the manufacturing cost. More effective solution is to improve the geometric symmetry over all, or to control the quality of components by sorting out inferior ones. The latter is more effective and reasonable than the former in view of manufacturing. So, an appropriate discrimination method should be needed to evaluate aero-pulsation noise level at the production line. In this paper, we introduce the accurate method which can measure the noise level of aeropulsation and also present its evaluation criteria. Besides verifying the reliability of a measurement system - a rig test system -, we analyze the correlation between the results from rig tests and those from vehicle tests. The gage R&R method is carried out to check the repeatability of measurements over 25 samples. From the result, we propose the standard specification which can discriminate inferior products from superior ones on the basis of aero-pulsation noise level.

  • PDF

LAS-Derived Determination of Surface-Layer Sensible Heat Flux over a Heterogeneous Urban Area (섬광계를 이용한 비균질 도시 지표에서의 현열속 산정)

  • Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2015
  • A large aperture scintillometer (LAS) was deployed with an optical path length of 2.1 km to estimate turbulent sensible heat flux (${\mathcal{Q}}_H$) over a highly heterogeneous urban area. Scintillation measurements were conducted during cold season in November and December 2013, and the daytime data of 14 days were used in the analysis after quality control processes. The LAS-derived ${\mathcal{Q}}_H$ show reasonable temporal variation ranging $20{\sim}160W\;m^{-2}$ in unstable atmospheric conditions, and well compare with the measured net radiation. The LAS footprint analysis suggests that ${\mathcal{Q}}_H$ can be relatively high when the newly built-up urban area has high source contribution of the turbulent flux in the study area ('northwesterly winds'). Sensitivity tests show that the LAS-derived ${\mathcal{Q}}_H$ are highly sensitive to non-dimensional similarity function for temperature structure function parameter, but relatively less sensitive to surface aerodynamic parameters and meteorological variables (temperature and wind speed). A lower Bowen ratio also has a significant influence on the flux estimation. Overall uncertainty of the estimated daytime ${\mathcal{Q}}_H$ is expected within about 20% at an upper limit for the analysis data. It is also found that stable atmospheric conditions can be poorly determined when the scintillometry technique is applied over the highly heterogeneous urban area.

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

Improvement of dynamic responses of a pedestrian bridge by utilizing decorative wind chimes

  • Liu, Wei-ya;Tang, Hai-jun;Yang, Xiaoyue;Xie, Jiming
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.317-323
    • /
    • 2020
  • A novel approach is presented to improve dynamic responses of a pedestrian bridge by utilizing decorative wind chimes. Through wind tunnel tests, it was verified that wind chimes can provide stabilization effects against flutter instability, especially at positive or negative wind angles of attack. At zero degrees of angle of attack, the wind chimes can change the flutter pattern from rapid divergence to gradual divergence. The decorative wind chimes can also provide damping effects to suppress the lateral sway motion of the bridge caused by pedestrian footfalls and wind forces. For this purpose, the swing frequency of the wind chimes should be about the same as the structural frequency, which can be achieved by adjusting the swing length of the wind chimes. The mass and the swing damping level are other two important and mutually interactive parameters in addition to the swing length. In general, 3% to 5% swing damping is necessary to achieve favorite results. In the study case, the equivalent damping level of the entire system can be increased from originally assumed 1% up to 5% by using optimized wind chimes.

Range Sensitivity Analysis of a Canard Controlled Missile (유도 미사일의 사거리 민감도 연구)

  • Yang, Young-Rok;Cho, Tae-Hwan;Myong, Rho-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • This study describes a range sensitivity of a canard controlled missile. An investigation was conducted into the relative importance of aerodynamic parameters on a guided missile. Also this study was analyzed by quantifying their effects on the missile range. To analyze the range sensitivity of a guided missile, a trajectory analysis program of a guided missile was developed. The range sensitivity analysis was conducted on a thrust, weight, drag and lift. The result of the range sensitivity analysis shows that the design parameters with the greatest effect on the missile range are thrust, drag, weight, and lift, in descending order of importance. The thrust on range extension is quite obvious to extend a range of a guided missile. In particular, the drag exhibited greater range sensitivity than lift at a guided flight. The result also shows that missile range could be maximized by applying the appropriate launch angle and canard pitch-up control.

Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity

  • Lee, Seung-Jun;Lee, In;Shin, Won-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.140-147
    • /
    • 2007
  • Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel's minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.