• 제목/요약/키워드: Aerodynamic coefficients

검색결과 369건 처리시간 0.023초

캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구 (Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model)

  • 신종현;장세명;문병영
    • 한국항공우주학회지
    • /
    • 제43권2호
    • /
    • pp.97-108
    • /
    • 2015
  • 돛 요트, 패러글라이더, 또는 고공 풍력 등의 설계에 있어, 3차원 모델에 가해지는 측풍공기력을 해석하는 일은 다양한 기계의 성능을 예측하기 위해 매우 중요하다. 3차원 형상 주위의 본질적인 유동 물리를 이해하기 위하여, 본 연구에서는 간략화된 강체 모델들이 제안되었다. 자유류 속도, 받음각, 종횡비, 그리고 캠버가 독립변수로서 고려되었다. 양력과 항력 계수들은 ANSYS-CFX를 이용한 전산유체역학 해석을 통하여 계산되었고, 유동장의 후처리된 가시화 결과는 유체역학의 관점에서 해석되었다.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

풍동실험을 통한 착빙 가공송전선의 공력 특성 측정 및 갤러핑 발생 분석 (Aerodynamic Characteristics and Galloping Possibility of Ice Accreted Transmission Conductors by Wind Tunnel Tests)

  • 이두영;구재량;박수만;김동환
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제3권2호
    • /
    • pp.79-88
    • /
    • 2017
  • 본 논문은 송전선로 갤러핑 현상 분석을 위해 요구되는 비대칭 송전선의 공기력 계수 측정에 관한 것으로, 세 종류의 비대칭 단면으로 구성된 단도체, 2도체 및 4도체 모형에 대해서 난류 조건에서의 풍동실험을 수행하였다. 송전선로 갤러핑은 비대칭의 착빙된 송전선에 안정된 바람이 작용하는 경우 발생하는 유체유발진동의 한 종류로, 상간 이격거리와 송전탑 하중의 계산 등 송전선의 설계시 고려해야하는 주요 인자 중 하나이다. 갤러핑에 의해 발생하는 반복적인 변동 하중은 송전선을 포함한 체결 부품 등에 큰 동응력을 발생시키는 것을 고려하여, 송전선을 비롯한 각종 부품은 마모와 피로손상에 견딜 수 있는 충분한 내구성을 가져야 한다. 국내에서도 빙설해에 의한 송전선로의 고장은 급격한 전압 강하로 인한 전기 품질에 큰 영향을 끼치는 주요 원인이 되고 있으며, 매년 약 20건 이상씩 발생하고 있는 점을 고려해, 안정적인 전력 공급과 유지, 보수 비용을 절감하기 위해서 갤러핑 현상에 대해서 기초부터 체계적인 접근이 요구되고 있다.

Simulation of Conceptual Designs of a Three-Surface Stealth Strike Fighter

  • Kuizhi, Yue;ShiChun, Chen;Wenlin, Liu;Dazhao, Yu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.366-373
    • /
    • 2014
  • A conceptual design of a three-surface strike fighter was studied and stealth performance was taken into account to enhance survivability and battle effectiveness. CATIA was used to design the aircraft's three-dimensional prototype model and the weapon carriage arrangement was also studied. The aircraft's RCS characteristics and distributions under X, S, C, and L bands were simulated using the RCSPlus software, which is based on the PO method. Pressure and velocity distributions of the flow field were also simulated using CFD. A turbulence model was based on standard $k-{\varepsilon}$ function and N-S functions were used during the CFD computation. Lift coefficients, drag coefficients, and lift-to-drag ratio were obtained by aerodynamic simulation. The results showed that: (1) the average value of head-on RCS between ${\pm}30^{\circ}$ is below -3.197 dBsm, and (2) the lift coefficient is 0.34674, the drag coefficient is 0.04275, and the lift-to-drag ratio is 8.11087 when the attack angle is $2.5^{\circ}$.

직렬 배치된 두 부유체에 작용하는 조류력 및 풍력 특성에 관한 수치해석 연구 (Numerical Study of Current and Wind Forces Acting on Two Floating Bodies in Tandem Configuration)

  • 홍장표;남보우;윤경원;김영식;성홍근
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.378-386
    • /
    • 2014
  • In this study, the characteristics of the current and wind forces acting on two floating bodies were numerically investigated using a commercial CFD software, STAR-CCM+. In the numerical analyses, LNGC was located right behind FSRU under uniform current or wind conditions. Steady calculations were carried out using a Reynolds averaged Navier-Stokes (RANS) solver and the realized k-epsilon model. First, the current coefficients of FSRU based only the CFD were compared with the model test data. Through this comparison, the present numerical models and mesh systems were indirectly verified. Next, computations for FSRU and LNGC in a uniform current were performed using different relative positions. It was found that the current coefficients were great affected by the longitudinal positions. Finally, the wind forces acting on FSRU and LNGC in tandem configurations were studied. The focus was on the shielding effects due to the aerodynamic interactions between FSRU and LNGC.

Galloping analysis of stranded electricity conductors in skew winds

  • Macdonald, J.H.G.;Griffiths, P.J.;Curry, B.P.
    • Wind and Structures
    • /
    • 제11권4호
    • /
    • pp.303-321
    • /
    • 2008
  • When first commissioned, the 1.6 km span 275kV Severn Crossing Conductor experienced large amplitude vibrations in certain wind conditions, but without ice or rain, leading to flashover between the conductor phases. Wind tunnel tests undertaken at the time identified a major factor was the lift generated in the critical Reynolds number range in skew winds. Despite this insight, and although a practical solution was found by wrapping the cable to change the aerodynamic profile, there remained some uncertainty as to the detailed excitation mechanism. Recent work to address the problem of dry inclined cable galloping on cable-stayed bridges has led to a generalised quasi-steady galloping formulation, including effects of the 3D geometry and changes in the static force coefficients in the critical Reynolds number range. This generalised formulation has been applied to the case of the Severn Crossing Conductor, using data of the static drag and lift coefficients on a section of the stranded cable, from the original wind tunnel tests. Time history analysis has then been used to calculate the amplitudes of steady state vibrations for comparison with the full scale observations. Good agreement has been obtained between the analysis and the site observations, giving increased confidence in the applicability of the generalised galloping formulation and providing insight into the mechanism of galloping of yawed and stranded cables. Application to other cable geometries is also discussed.

Aerostatic load on the deck of cable-stayed bridge in erection stage under skew wind

  • Li, Shaopeng;Li, Mingshui;Zeng, Jiadong;Liao, Haili
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.43-63
    • /
    • 2016
  • In conventional buffeting theory, it is assumed that the aerostatic coefficients along a bridge deck follow the strip assumption. The validity of this assumption is suspect for a cable-stayed bridge in the construction stages, due to the effect of significant aerodynamic interference from the pylon. This situation may be aggravated in skew winds. Therefore, the most adverse buffeting usually occurs when the wind is not normal to bridge axis, which indicates the invalidity of the traditional "cosine rule". In order to refine the studies of static wind load on the deck of cable-stayed bridge under skew wind during its most adverse construction stage, a full bridge 'aero-stiff' model technique was used to identify the aerostatic loads on each deck segment, in smooth oncoming flow, with various yaw angles. The results show that the shelter effect of the pylon may not be ignored, and can amplify the aerostatic loading on the bridge deck under skew winds ($10^{\circ}-30^{\circ}$) with certain wind attack angles, and consequently results in the "cosine rule" becoming invalid for the buffeting estimation of cable-stayed bridge during erection for these wind directions.

Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향 (Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface)

  • 박종수;최병대;김성준
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD

  • Kaya, Mehmet Numan;Kok, Ali Riza;Kurt, Huseyin
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.239-248
    • /
    • 2021
  • In this study, three airfoil families, NACA, FX and S, in each case three from each series with different shapes were investigated at different angles of attack using Computational Fluid Dynamics (CFD) method. To verify the CFD model, simulation results of the NACA 0012 airfoil was compared against the available experimental data and k-ω SST was used as the turbulence model. Lift coefficients, lift to drag ratios and pressure distributions around airfoils were obtained from the CFD simulations and compared each other. The simulations were performed at three Reynolds numbers, Re=2×105, 1×106and 2×106, and angle of attack was varied between -6 and 12 degrees. According to the results, similar lift coefficient values were obtained for symmetric airfoils reaching their maximum values at similar angles of attack. Maximum lift coefficients were obtained for FX 60-157 and S 4110 airfoils having lift coefficient values around 1.5 at Re=1×106 and 12 degrees of angle of attack. Flow separation occurred close to the leading edge of some airfoils at higher angles of attack, while some other airfoils were more successful in keeping the flow attached on the surface.