• 제목/요약/키워드: Aerobic biological treatment

검색결과 151건 처리시간 0.026초

Effects of sodium diacetate or microbial inoculants on aerobic stability of wilted rye silage

  • Li, Yan Fen;Wang, Li Li;Jeong, Eun Chan;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1871-1880
    • /
    • 2022
  • Objective: The primary goal was to identify the effectiveness of chemical or biological additives in delaying the deterioration of early-harvested wilted rye silage after exposure to air. Methods: Rye harvested as a whole plant at the early heading stage was wilted for 24 h. The wilted forage was divided into treatments including sodium diacetate (SDA) at 3 (SDA3) and 6 g/kg (SDA6), Lactobacillus plantarum (LP), L. buchneri (LB), or their equal mixture (LP+LB) at 1×106 colony-forming unit/g fresh matter. Results: After 60 d of conservation in 20-L silos, lactic acid was greater in LP and LP+LB silages than other treatments (102 vs 90.2 g/kg dry matter [DM]). Acetic acid was greatest in SDA6 (32.0 g/kg DM) followed by LB (26.1 g/kg DM) and was lowest in LP treatment (4.73 g/kg DM). Silage pH was lower with microbial inoculation and the lowest and highest values were observed in LP and untreated silages, respectively. After 60 d, neutral detergent fiber concentration was lowest in SDA6 silages, resulting in the greatest in vitro DM digestibility (846 g/kg DM). Aerobic stability was longest in SDA6 (176 h) followed by LB treatment (134 h). Instability after aerobiosis was greatest in LP silages (68 h), about 8 h less than untreated silages. After aerobic exposure, yeast and mold numbers were lowest in SDA6 silages, resulting in DM loss minimization. Exhaustion of acetic acid and lactic acid after aerobic exposure was lowest with SDA6 but greatest with untreated and LP silages. Conclusion: Treatment of early-cut wilted rye forage with SDA at 6 g/kg resulted in silages with higher feeding value and fermentation quality, and substantially delayed deterioration after aerobic exposure, potentially qualifying SDA at this load for promotion of silage quality and delaying aerobic spoilage of early-harvested (low DM) rye forage.

박테리아의 산소소비량에 관한 실험적 고찰 (Respiratory Activity of Bacteria in Various Concentrations of Glucose)

  • 최명자
    • Journal of Preventive Medicine and Public Health
    • /
    • 제10권1호
    • /
    • pp.134-137
    • /
    • 1977
  • The most efficient method for reducing the organic content of dilute liquid waste is by aerobic-biological treatment. Basically, the organisms responsible for treatment possess the ability to decompose complex organic compounds and to use the energy so liberated for their bodily functions: reproduction, growth, locomotion and so on. That part of organic matter used to produce energy is converted to the essentially stable end products of carbon dioxide, water and ammonia, while the remainder is converted to new cells which can be settled and thus removed from the liquid before the waste is discharged to the receiving body water. Oxygen must be supplied continuously during the aerobic process. In the field of sewage treatment the Warburg respirometer is used mainly for the measurement of the oxygen uptake of samples. In this experiment the Warburg constant volume respirometer was used to determine the oxygen uptake by bacteria in the presence of various glucose concentrations. The rate of oxygen uptake by the bacteria was expressed as the respiratory quotient. The result indicated that the oxygen uptake was proportional to the glucose concentration. The expecting equation of the regression line was Y=7.7+0.12X where Y: respiratory quotient, ${\mu}l.\;O_2$ taken up/mg. dry wt. bacterium/hr. X: concentration of glucose, mg/l

  • PDF

돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정 (Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure)

  • 손보균;강성구;조은주;김신도;이창주;김정호
    • 한국토양비료학회지
    • /
    • 제39권2호
    • /
    • pp.73-79
    • /
    • 2006
  • 돈분뇨 중의 악취 성분을 제거하는 동시에 퇴비의 C/N 비를 적정 수준으로 유지하기 위한 방안으로서 축산농가에 보급을 목적으로 pilot 장치를 제작하여 돈분뇨를 호기성 액비화 처리하기 이전에 암모니아 탈기공정 실험을 수행하였다. 암모니아 탈기를 위한 pH 조정을 $Ca(OH)_2$를 이용하였으며, NaOH에 비해 훨씬 현장 적용성이 용이한 것으로 파악되었다. 암모니아 탈기공정의 적정 pH를 도출하기 위해 각각 pH를 9.3, 10.9, 12.3 으로 조절하여 탈기실험을 수행한 결과 pH가 가장 높은 12.3에서 가장 우수한 것으로 나타났고, 이때 반응온도는 $35^{\circ}C$이었다. 암모니아 탈기공정이 진행되는 동안 유리암모니아 질소의 가스상 암모니아로의 전환을 통해 발생되는 방출속도는 탈기공정 초기에는 $0.5355mole\;s^{-1}$ 이었고 탈기공정 후기에는 $0.0253mole\;s^{-1}$ 로 나타나, 주로 탈기공정 초기에 많은 양의 암모니아 가스가 방출되는 것을 알 수 있었다. 탈기공정중 C/N비 변화는 초기 돈분뇨 원수가 4.5이었고 탈기공정 초기에 6.3으로 증가한 이후에 점진적으로 증가하였다. 적정한 탈기를 위한 최적의 탈기시간은 TN과 TC의 회귀 곡선을 통해 C/N비가 6.5 부근인 약 48시간이 적합한 것으로 결론지었다. 탈기를 통해 돈분뇨 중의 암모니아성 질소성분은 79.6% 저감되었으며, 흡수액을 통해 배출된 암모니아가스의 81.3%를 제거하였다.

생물막법에 의한 양조폐수 처리에 관한 연구 (A study on the Treatment of Brewhouse Wastewater using Biological Film Process)

  • 은종극;이태호
    • 환경위생공학
    • /
    • 제18권3호통권49호
    • /
    • pp.59-63
    • /
    • 2003
  • This study was carried out to get efficient of organic material removal and wastage sludge production minimized effects on the treatment of Brewhouse wastewater using aerobic RBC and curtain biological film contact process. As a results of biofilm attachment experiment aggravation of water quality due to excessive biofilm showed after every 13 days of operating times. The concentration of BOD at raw wastewater was 3800${\sim}$5300 mg/L and COD was 2300${\sim}$3100 mg/L. The average BOD of effluent was maintained 18 mg/L and average COD was 26 mg/L. The result of this experiment was wastage sludge did not almost generated.

커어튼형 생물막 접촉공법에 의한 도축장 폐수 처리에 관한 연구 (A study on the Treatment of Slaughterhouse Wastewater using Curtain Biological Film Contact Process.)

  • 이태호;은종극
    • 환경위생공학
    • /
    • 제15권4호
    • /
    • pp.14-19
    • /
    • 2000
  • This study was carried out to get efficient of nutrient removal and wastage sludge production minimized effects on the treatment of slaughterhouse wastewater using aerobic curtain biological film contact process. As a results of biofilm attachment experiment aggravation of water quality due to excessive biofilm showed after every 15 days of operating times. The concentration of BOD and COD in the influent were 2500~3000mg/L and 1700~2100mg/L , respectively. The average BOD and CoD were 9mg/L and 17mg/L , respectively. The result of this experiment was wastage sludge did not almost generated and the removal efficiency of nutrients were kept equilibrium.

  • PDF

생물막 여과반응기를 이용한 고도질소 제거법의 개발 (Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage)

  • 정진우;김성원;津野洋
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Aeration Factor Used To Design The Container Type of Biopile Systems for Small-Scale Petroleum-Contaminated Soil Projects

  • Jung, Hyun-Gyu
    • 한국토양비료학회지
    • /
    • 제44권2호
    • /
    • pp.316-319
    • /
    • 2011
  • Biopiles which offer the potential for cost-effective treatment of contaminated soils are above-ground, engineered systems that use oxygen to stimulate the growth and reproduction of aerobic bacteria for degradation of the petroleum constituents adsorbed to soil in excavated soils. This technology involves heaping contaminated soils into piles and stimulating aerobic microbial activity within the soils through the aeration and/or addition of minerals, nutrients, and moisture. Inside the biopile, microbially mediated reactions by blowing or extracting air through the pipes can enhance degradation of the organic contaminants. The influence of a aeration system on the biopile performance was investigated. Air pressure made to compare the efficiency of suction in the pipes showed that there were slightly significant difference between the two piles in the total amount of TPH biodegradation. The normalised degradation rate was, however, considerably higher in the aeration system than in the normal system without aeration, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile.

Sequencing Batch Reactor (SBR)를 이용한 질산화와 탈질산화 (Nitrification and Denitrification by Using a Sequencing Batch Reactor System)

  • 박종호;이원호;조규석;황규덕
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.247-253
    • /
    • 2003
  • Sequencing Batch Reactor (SBR) was operated under various experimental conditions to improve the efficiency of biological filters used for the treatment of recycled wastewater from aquaculture. This SBR system was operated for removing COD, ammonia and suspended solid that were the major pollutants in aquaculture wastewater. Aerobic and anoxic conditions after FILL mode were applied intermittently for effective removal of nitrogen. SETTLE and DRAW modes were followed by the complete aerobic and anoxic REACT mode. The total volume of the SBR was 75 liter, while the working volume in a cycle was 35 liters. When the final operating strategy of the SBR was FILL/REACT/SETTLE/DRAW of 0.5/10/1/0.5 hr. the removal efficiencies of TCODcr, $NH_{4}^{+}-N,$ and T-N were 94, 98, and $89\%,$ respectively.

Pilot Plant Study on Biological Nutrient Removal of Wastewater

  • Ahn, Sang-Jin;Kim, Geon-Heung;Ahn, Bok-Kyoun
    • Korean Journal of Hydrosciences
    • /
    • 제1권
    • /
    • pp.99-106
    • /
    • 1990
  • An extensive biological nutrient removal pilot plant study of anoxic/anaerobic/ aerobic treatment process was conducted to eastblish an optimum operational mode using primary dffluent. Two operational modes, (1) Qr/Q was 3.0 and maintaining EMLSS of 3100 mg/L in which the best operational results were obtained from previous bench scale study using synthetic wastewater (2) Qr/Q was 0.5 and EMLSS of 2200 mg/L which was compatible with the main plant, were Compared and evaluated for removal of nitrogen and/or phosphorous under field conditions. The nitrogen removal increased with increasing recycle ratios, but the phosphorous removal revealed more consistent results with 83percent removal efficiency in the second mode compared with 80 percent in the first mode. Above all, the two modes equally showed good BOD and nitrogen removals by nitrification-denitrification processes. It was also observed that no scum formed in the pilot plant and the sludge exhibited excellent settling characteristic all the time. The modified biological nutrient removal train can be adopted to the main plant without any major changes of their operational modes.

  • PDF

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • 제14권4호
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.