• Title/Summary/Keyword: Aerobic batch reactor

Search Result 96, Processing Time 0.022 seconds

Volatile Fatty Acids Production During Anaerobic and Aerobic Animal Manure Bio-treatment

  • Hong, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.219-232
    • /
    • 2007
  • Odors from manures are a major problem for livestock production. The most significant odorous compounds in animal manure a.e volatile fatty acids(VFAs). This work reviews the VFAs from the anaerobic sequencing biofilm batch reactor(ASBBR), anaerobic sequencing batch reactor(ASBR), solid compost batch reactor(SCBR), and aerobic sequencing batch reactor(SBR) associated with the animal manure biological treatment. First, we describe and quantify VFAs from animal manure biological treatment and discuss biofiltration for odor control. Then we review certain fundamentals aspects about Anaerobic and aerobic SBR, composting of animal manure, manure compost biofilter for odorous VFAs control, SBR for nitrogen removal, and ASBR for animal wastewater treatment systems considered important for the resource recovery and air quality. Finally, we present an overview for the future needs and current experience of the biological systems engineering for animal manure management and odor control.

  • PDF

Comparative study on response of thiocyanate shock load on continuous and fed batch anaerobic-anoxic-aerobic sequential moving bed reactors

  • Sahariah, B.P.;Chakraborty, S.
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • A comparative study on response of a toxic compound thiocyanate ($SCN^-$) was carried out in continuous and fed batch moving bed reactor systems. Both systems had three sequential anaerobic, anoxic and aerobic reactors and operated at same hydraulic retention time. Feed $SCN^-$ was first increased from 600 mg/L to 1,000 mg/L for 3 days (shock 1) and then from 600 to 1,200 mg/L for 3 days (shock 2). In anaerobic continuous reactor, increase of effluent COD (chemical oxygen demand) due to shock load was only 2%, whereas in fed batch reactor it was 14%. In anoxic fed batch reactor recovery was partial in terms of $SCN^-$, phenol, COD and $NO{_3}{^-}$-N and $NO{_2}{^-}$-N removals and in continuous reactor complete recovery was possible. In both systems, inhibition was more significant on aerobic reactors than anaerobic and anoxic reactors. In aerobic reactors ammonia removal efficiency deteriorated and damage was irreversible. Present study showed that fed batch reactors showed higher substrate removal efficiency than continuous reactors during regular operation, but are more susceptible to toxic feed shock load and in nitrifying reactor damage was irreversible.

토착미 생물을 이용한 TNT(2,4,6-Trinitrotoluene)의 생물학적분해

  • 배범한;유경민;장윤영;이인숙
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.235-238
    • /
    • 2002
  • Microorganisms were isolated from military shooting site. Aerobic batch reactor and resting cell condition experiments were carried out using isolated microorganisms. Experiments were examined at room temperature on shaker and ten-roll mixer. During 10 days of reaction time, TNT was degraded 15.51 ~ 22.47 mg/L from initial concentration(31$\pm$1 mg/L) by aerobic batch reactor. Aerobic resting cell condition experiments were carried out ill phosphate buffer with 58($\pm$1) mg/L TNT at pH of 6.0($\pm$0.2). TNT was degraded 67.8% of initial concentration. The mai or component was found 4-ADNT(4-Aminodinitrotoluene).

  • PDF

A Study on Usage of Results from Batch Reactor for Design of Aerobic Digestion (호기성 소화조 설계시 회분식 반응조에서 획득된 결과의 이용방안에 관한 연구)

  • Choung, Youn-Kyoo;Ko, Kwang-Baik;Park, Joon-hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 1994
  • In the general process of design for aerobic digestion, the design for field plant of which inflow pattern is continuous inflow is performed using the results from lab scale batch reactor. However, the recent researchers reported that the general designs were performed as over-estimated, Therefore, in this study, laboratory batch experiments were carried out at $20^{\circ}C$ and pH 7.5 on the aerobic digestion of waste activated sludge at different solid levels. This treatise could consider the negligence about effective digestion periods the usage of VSS as solid concentration, and the effect of initial solid concentration of solid degration rate coefficient($k_d$) as reasons of the overestimated design, and showed the scheme of how to design for aerobic digestion from batch experiment.

  • PDF

Comparison of Anaerobic and Aerobic Sequencing Batch Reactor System for Liquid Manure Treatment (액상가축분뇨처리에서 혐기성 및 호기성 연속 회분식 반응조 시스템의 비교 연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.113-118
    • /
    • 2008
  • Sequencing batch operation consists of fill, react, settle and decant phases in the same reactor. Operation consists of anaerobic, anoxic and oxic (aerobic) phases when nutrient removal from the wastewater is desired. Since the same reactor is used for biological oxidation (or mixing) and sedimentation in aerobic and anaerobic SBR operations, capital and operating costs are lower than conventional activated sludge process and conventional anaerobic digestion process, respectively. Therefore, Aerobic SBR and Anaerobic SBR operations may be more advantageous far treatment of small volume animal wastewater in rural areas.

  • PDF

Volatile Organic Compounds Production from Aerobic Biotreatment of Dairy Wastewater by a Sequencing Batch Reactor (연속회분식반응기(SBR)에 의한 낙농폐수의 호기성처리에서 휘발성유기물질 발생)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • Aerobic sequencing batch reactor (SBR) was used to treat screened dairy wastewaters. The study examined the production of volatile organic compounds (VOCs) and volatile fatty acids (VFAs) in the aerobic SBR and raw manure effluent storage over 35 days. The reduction of total VFAs in the aerobic SBR was over $59\%$ removal than that of the raw manure. Acetic acid production in the aerobic SBR and the raw manure effluent storage were kept 138 and 286 mg/L. The propionic acid in the aerobic SBR was 1.9 mg/L, while the raw manure effluent storage was 68 mg/L, respectively. The concentrations of VOCs in the aerobic SBR reactor and effluent fill down remarkably than the raw manure storage. The results confirmed that the aerobic biological treatment is an essential requirement for minimizing odor problems.

  • PDF

Removal of Simultaneously Biological Organic, Nitrogen, and Phosphorus Removal in Sequencing Batch Reactors using Night-soil (연속회분식 반응기(Sequencing Batch Reactor)를 이용한 분뇨중 유기물과 질소 및 인의 동시제거)

  • 한기백;박동근
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.697-709
    • /
    • 1997
  • Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 61 bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10, 680 mg/l, TBm : 6, 893 mg/l, $NH_4^+-N$ : 1, 609 mg/l, $PO_4^{3-}-P$ : 602 mg/l on average. The cycling time In SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and inoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT From the experimental results, the optimum cycling time for biological nutrient removal with nlght-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic), Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.571, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.

  • PDF

Effects of Aerobic and Non-Aerobic Starvation on SBR Performance When Treating Saline Wastewater

  • Moon, Byung-Hyun;Park, Kyung-Hun;Kim, Sang-Soo;Yoon, Cho-Hee
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.139-144
    • /
    • 2012
  • In this study, the effects of starvation on floc characteristics when treating saline wastewater using a sequencing batch reactor (SBR) were investigated. The effectiveness over 5 days of starvation for aerobic and non-aerobic strategies for maintaining the physical characteristics of floc-forming sludge and the recovery period needed to regain the initial pollutant removal efficiency were investigated. Experiment results revealed that the sludge volume index (SVI) increased and the floc size and fractal dimension decreased after starvation under both aerobic and non-aerobic conditions. Sludge settleability deteriorated faster under aerobic conditions compared to non-aerobic conditions. Under non-aerobic conditions, the SBR required less time to return to its initial pollutant removal efficiency and settleability. Floc size, fractal dimension, and SVI were observed to be fairly correlated with each other. The results demonstrated that it was better to maintain the sludge under non-aerobic rather than aerobic starvation, because it adapted to, resisted starvation and had a quicker re-start afterward.

A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor (연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구)

  • 박민정;김동석
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

Nitrification and Denitrification by Using a Sequencing Batch Reactor System (Sequencing Batch Reactor (SBR)를 이용한 질산화와 탈질산화)

  • PARK Jong-Ho;LEE Won-Ho;CHO Kyu-Seok;HWANG Gyu-Deok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • Sequencing Batch Reactor (SBR) was operated under various experimental conditions to improve the efficiency of biological filters used for the treatment of recycled wastewater from aquaculture. This SBR system was operated for removing COD, ammonia and suspended solid that were the major pollutants in aquaculture wastewater. Aerobic and anoxic conditions after FILL mode were applied intermittently for effective removal of nitrogen. SETTLE and DRAW modes were followed by the complete aerobic and anoxic REACT mode. The total volume of the SBR was 75 liter, while the working volume in a cycle was 35 liters. When the final operating strategy of the SBR was FILL/REACT/SETTLE/DRAW of 0.5/10/1/0.5 hr. the removal efficiencies of TCODcr, $NH_{4}^{+}-N,$ and T-N were 94, 98, and $89\%,$ respectively.