• Title/Summary/Keyword: Aerial image data

Search Result 429, Processing Time 0.023 seconds

Study on the Estimation of leaf area index (LAI) of using UAV vegetation index and Tree Height data (UAV 식생지수 및 수고 자료를 이용한 엽면적지수(LAI) 추정 연구)

  • MOON, Ho-Gyeong;CHOI, Tae-Young;KANG, Da-In;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.158-174
    • /
    • 2018
  • The leaf area index (LAI) is a major factor explaining the photosynthesis of vegetation, evapotranspiration, and energy exchange between the earth surface and atmosphere, and there have been studies on accurate and applicable LAI estimation methods. This study aimed to investigate the relationship between the actual LAI data, UAV image-based vegetation index, canopy height and satellite image (Sentinel-2) LAI and to present an effective LAI estimation method using UAV. As a result, among the six vegetation indices in this study, NDRE ($R^2=0.496$) and CIRE ($R^2=0.443$), which contained red-edge band, showed a high correlation. The application of the canopy height model data to the vegetation index improved the explanatory power of the LAI. In addition, in the case of NDVI, the saturation problem caused by the linear relationship with LAI was addressed. In this study, it was possible to estimate high resolution LAI using UAV images. It is expected that the applicability of such data will be improved if calibration and correction steps are carried out for various vegetation and seasonal images.

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

A Study on Selecting Geospatial Framework Data Using Factor Analysis (요인분석을 이용한 기본공간정보 선정에 관한 연구)

  • Choe, Byong Nam;Lee, Ji Hun;Park, Jin Sik;Kang, In Gu
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2015
  • Several countries have built National Spatial Data Infrastructure (NSDI) for information sharing among various fields. One of the important factors of NSDI is framework data, which is the most commonly used geospatial data across various fields. Previous studies on the framework data suggest components based on frequency survey and case study. However, such research methods do not have objectivity in setting the components of the framework data. This research uses factor analysis with 104 medium-level layers from the most widely used National Base Map and 5 layers from the other sources including cadastre and aerial image. Each layer is scaled with usage level as four different patterns of 1) background data, 2) reference data, 3) base data, and 4) other data, respectively. The analysis results show that the layers are grouped into 5 to 7 factors according to the patterns. ANOVA reveals that the mean differences between the factors with high values and the other factors with low values under each pattern are statistically significant. Such high value factors under each pattern consist of similar layers, close to identical, with those under the other categories. This research proposes framework data system, including transportation, building, hydrography, elevation, administrative district, digital orthoimagery, geodetic control, and cadastral based on the analysis results. Proposed framework in this research will be a basis of establishing spatial data sharing system. For sharing proposed framework data in various fields, these data must be established and distributed as actual standard and also related future researches should be performed.

Extracting Individual Number and Height of Tree using Airborne LiDAR Dataa (항공라이다 자료를 활용한 수목의 개체수 및 수고 추출)

  • Kim, Doo-Yong;Choi, Yun-Woong;Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.87-100
    • /
    • 2016
  • The acquisition of the forest resource information has depended on a partial sampling method or aerial photographs which demand a lot of effort and time because of the vast areas and the difficult approach. For the acquisition of the forest resource information, there have been the optical remote-sensing and the multi-spectrum image to offer only horizontal distributions of trees, but a new technological approach, such as Airborne LiDAR, is more necessary to acquire directly three dimensional information related to the forest terrains and trees' features. This paper proposes an algorithm for the forest information extraction such as trees' individual numbers and the heights of trees by using LiDAR data. Especially, this proposed algorithm adopts a region growing method for the extraction of the vegetation-point and extracts the forest information using morphological features of trees.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

UAV Communication System Development by Heterogeneous Mobile Communication System (이종의 이동통신 시스템을 이용한 무인항공기 탑재용 통신시스템 개발)

  • Ko, Kyung-Wan;Park, Pyung-Joo;Lee, Suk-Shin;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.490-502
    • /
    • 2009
  • This monograph details the development of communication UAV(Unmanned Aerial Vehicle) in combined modems of HSDPA with Wibro by using two kinds of mobile network. In order to apply mobile network which is currently serviced to a UAV, it is necessary to solve some problems : insurance of wide coverage based on the range of the UAV, electrical transmission of extensive image data for UAV for watching and scouting, security of stable communication environment is related to network traffic. This paper proposes those difficulties to be solved by application of correspondence system to mobile network. The proposed system consists of two parts; HSDPA part and Wibro part. The use of those can not only secure wide range of coverage but also transmit huge data. Furthermore, through utilizing them along with two kinds of mobile network, stable communication environment can be built up. All of these effects can be confirmed by experimentations and simulations.

  • PDF

Cloud Computing-Based Processing of Large Volume UAV Images Acquired in Disaster Sites (재해/재난 현장에서 취득한 대용량 무인기 영상의 클라우드 컴퓨팅 기반 처리)

  • Han, Soohee
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1027-1036
    • /
    • 2020
  • In this study, a cloud-based processing method using Agisoft Metashape, a commercial software, and Amazon web service, a cloud computing service, is introduced and evaluated to quickly generate high-precision 3D realistic data from large volume UAV images acquired in disaster sites. Compared with on-premises method using a local computer and cloud services provided by Agisoft and Pix4D, the processes of aerial triangulation, 3D point cloud and DSM generation, mesh and texture generation, ortho-mosaic image production recorded similar time duration. The cloud method required uploading and downloading time for large volume data, but it showed a clear advantage that in situ processing was practically possible. In both the on-premises and cloud methods, there is a difference in processing time depending on the performance of the CPU and GPU, but notso much asin a performance benchmark. However, it wasfound that a laptop computer equipped with a low-performance GPU takes too much time to apply to in situ processing.

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

A Study on the Monitoring Method of Landslide Damage Area Using UAV (UAV를 이용한 산사태 피해지역 모니터링 방법에 관한 연구)

  • Kim, Sung-Bo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1043-1050
    • /
    • 2020
  • In this study, a study was presented on the monitoring technique of landslide area using UAV. In the case of disaster investigation using drone mapping, it can be used at various disaster sites. The mission can be carried out at various disaster sites, including surveys of damage to mountainous areas caused by landslides, building collapses surveys of flood damage, typhoons, earthquakes. The damage investigation plan using drone mapping is expected to be highly utilized at disaster sites where investigators cannot access it like in mountainous areas and where it is difficult to conduct direct damage investigations at the site. Drone mapping technology has many advantages in terms of disaster follow-up, such as recovery. Compared to the existing survey system, which was mainly carried out manually, the investigation time can be drastically reduced, and it can also respond to disaster sites that are difficult to carry out or are difficult to access directly. In addition, it is possible to establish and guide spatial data at the disaster site based on accurate mapping data from the time of the disaster, which has considerable strength in managing the situation of the disaster site, selecting priority areas for recovery, and establishing recovery plans. As such, drone mapping is a technology that can be used in a wide range of sites along with natural disasters and social disasters. If a damage investigation system is established through this, it is believed that it will contribute significantly to the rapid establishment of recovery plans along with the investigation of disaster response time and extent of damage recovery.

An Analysis of Vertical Position Accuracy for the Three-Dimensional Spatial Data Object Utilizing the Public Information (공공데이터를 활용한 3차원 공간정보 객체의 수직위치 정확도 분석)

  • Kim, Jeong Taek;Yi, Su Hyun;Kim, Jong Il;Bae, Sang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Recently, as new paradigm for government operation called government 3.0, government is actively operating policy opening and sharing public data. In addition, the Ministry of Land are operating an open platform integrated map service (the VWorld) which provides a variety of video contents such as the country's national spatial information, traffic information and three-dimensional building for the public. According to W3C Foundation's Open Data Status Report(2013), our country has the evaluated results that the part of the government's policy support and planning is good while the part of the data management is vulnerable. So our country needs the quality improvement for the data management. In addition, a digital aerial photograph image data is required to be up-to-date for the three-dimensional spatial object data. In this paper, we present the method for enhancement of the accuracy of vertical position and for maintainment of up-to-date vertical position. Our methods evaluate the data quality and analyze the cause of error of measurement utilizing the national standard quality assessment method. The result of research shows that the accuracy of vertical position is improved if the height of the building captain is adjusted by the quality assessment values and a three-dimensional model has up-to-date data if reconstruction and extension information of construction register is utilized.