• Title/Summary/Keyword: Aerial image data

Search Result 429, Processing Time 0.023 seconds

A review of ground camera-based computer vision techniques for flood management

  • Sanghoon Jun;Hyewoon Jang;Seungjun Kim;Jong-Sub Lee;Donghwi Jung
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.425-443
    • /
    • 2024
  • Floods are among the most common natural hazards in urban areas. To mitigate the problems caused by flooding, unstructured data such as images and videos collected from closed circuit televisions (CCTVs) or unmanned aerial vehicles (UAVs) have been examined for flood management (FM). Many computer vision (CV) techniques have been widely adopted to analyze imagery data. Although some papers have reviewed recent CV approaches that utilize UAV images or remote sensing data, less effort has been devoted to studies that have focused on CCTV data. In addition, few studies have distinguished between the main research objectives of CV techniques (e.g., flood depth and flooded area) for a comprehensive understanding of the current status and trends of CV applications for each FM research topic. Thus, this paper provides a comprehensive review of the literature that proposes CV techniques for aspects of FM using ground camera (e.g., CCTV) data. Research topics are classified into four categories: flood depth, flood detection, flooded area, and surface water velocity. These application areas are subdivided into three types: urban, river and stream, and experimental. The adopted CV techniques are summarized for each research topic and application area. The primary goal of this review is to provide guidance for researchers who plan to design a CV model for specific purposes such as flood-depth estimation. Researchers should be able to draw on this review to construct an appropriate CV model for any FM purpose.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

CNN-based Shadow Detection Method using Height map in 3D Virtual City Model (3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법)

  • Yoon, Hee Jin;Kim, Ju Wan;Jang, In Sung;Lee, Byung-Dai;Kim, Nam-Gi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.55-63
    • /
    • 2019
  • Recently, the use of real-world image data has been increasing to express realistic virtual environments in various application fields such as education, manufacturing, and construction. In particular, with increasing interest in digital twins like smart cities, realistic 3D urban models are being built using real-world images, such as aerial images. However, the captured aerial image includes shadows from the sun, and the 3D city model including the shadows has a problem of distorting and expressing information to the user. Many studies have been conducted to remove the shadow, but it is recognized as a challenging problem that is still difficult to solve. In this paper, we construct a virtual environment dataset including the height map of buildings using 3D spatial information provided by VWorld, and We propose a new shadow detection method using height map and deep learning. According to the experimental results, We can observed that the shadow detection error rate is reduced when using the height map.

Research on Basic Investigation and Analysis for Iand Substitution Planing using High-resolution Satellite Imagery (환지계획 수립시 고해상 위성영상을 이용한 기초조사 및 분석에 관한 연구)

  • Choi, Seung Pil;Jeong, Cheol Ju;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Various data like digital maps(1/1,000 or 1/5,000), field surveying, online materials and literatures are used for the preliminary investigation for urban development such as the feasibility evaluation, the profitability analysis, the zoning proposal, the zoning designation, and the land replotting planning. There are a couple of urban development methods like an expropriation, a replotting, a mixed-used method. The replotting method requires the consideration of land replotting types based on topography and building condition, which is not easy to gather data for the preliminary investigation maintaining the security of development planning. There are limitations of a preliminary investigation using aerial photos to detect topographic and building changes at specific period. GIS data combined with high-resolution imagery has advantages over the current dataset, which come from easy acquisition of various spatial resolution satellite images, wide swath coverage, the choice of imagery resolution satisfying a usage purpose, economic benefit comparing to aerial photos, and the calculation of distance and area on imagery from image modeling. For these reasons, the proposed method in this study enables to perform the more appropriate preliminary investigation using more accurate information.

Comparison of Accuracy and Characteristics of Digital Elevation Model by MMS and UAV (MMS와 UAV에 의한 수치표고모델의 정확도 및 특성 비교)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.13-18
    • /
    • 2019
  • The DEM(Digital Elevation Model) is a three-dimensional spatial information that stores the height of the terrain as a numerical value. This means the elevation of the terrain not including the vegetation and the artifacts. The DEM is used in various fields, such as 3D visualization of the terrain, slope, and incense analysis, and calculation of the quantity of construction work. Recently, many studies related to the construction of 3D geospatial information have been conducted, but research related to DEM generation is insufficient. Therefore, in this study, a DEM was constructed using a MMS (Mobile Mapping System), UAV image, and UAV LiDAR (Light Detection And Ranging), and the accuracy evaluation of each result was performed. As a result, the accuracy of the DEM generated by MMS and UAV LiDAR was within ± 4.1cm, and the accuracy of the DEM using the UAV image was ± 8.5cm. The characteristics of MMS, UAV image, and UAV LiDAR are presented through a comparison of data processing and results. The DEM construction using MMS and UAV can be applied to various fields, such as an analysis and visualization of the terrain, collection of basic data for construction work, and service using spatial information. Moreover, the efficiency of the related work can be improved greatly.

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.

Analysis of Non-Point Pollution Sources in the Taewha River Area Using the Hyper-Sensor Information (하이퍼센서 정보를 이용한 태화강지역의 비점오염원 분석)

  • KIM, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.56-70
    • /
    • 2017
  • In this study, multi-image information for the central Taewha River basin was used to develop and analyze a distribution map of non-point pollution sources. The data were collected using a hyper-sensor (image), aerial photography, and a field spectro-radiometer. An image correction process was performed for each image to develop an ortho-image. In addition, the spectra from the field spectro-radiometer measurements were analyzed for each classification to create land cover and distribution maps of non-point pollutant sources. In the western region of the Taewha River basin, where most of the forest and agricultural land is distributed, the distribution map showed generated loads for BOD($kg/km^2{\times}day$) of 1.0 - 2.3, for TN($kg/km^2{\times}day$) of 0.06 - 9.44, and for TP($kg/km^2{\times}day$) of 0.03 - 0.24, which were low load distributions. In the eastern region where urbanization is in progress, the BOD, TN, and TP were 85.9, 13.69, and 2.76, respectively and these showed relatively high load distributions when the land use was classified by plot.

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

Visualization and Computational Analysis for Flow around Rotating Blades (회전하는 블레이드 주위의 유동가시화 및 전산유동해석)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The optimal design is needed for the blade geometry of the quad-rotor blades which is mainly used for Unmanned Aerial Vehicle. To do this, it is important to analyze the wakes under the blades. In the present study, the flow around the rotating blades was analyzed using PIV(Particle Image Velocimetry) and CFD(Computational Fluid Dynamics). The maximum axial velocity was measured at about 60% position toward the radial direction of the blade. The positions of vorticities in the test section obtained by PIV and CFD were turned out to be almost alike. The values in the difference of pressure coefficients at the upper and the lower blades were increased depending on the radial direction. Then, the values were decreased at the blade tip. The data of the flow analysis in the present study are expected to be served as the design of blades and ducts for the thrust improvement in the future.