• 제목/요약/키워드: Aerial Type

검색결과 295건 처리시간 0.031초

드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험 (Development and Test of a Docking Type Automatic Landing System for Shipboard Landing )

  • 박민수;김성욱;유혁
    • 항공우주시스템공학회지
    • /
    • 제18권2호
    • /
    • pp.47-55
    • /
    • 2024
  • 공중 무인 이동체(UAV)인 드론을 해상 무인 이동체(USV)와 자율 협력하여 임무를 수행하기 위해선 자동 착륙 시스템이 필요하다. 본 논문에서는 피라미드 형상의 착륙 장치와 패드를 기반으로 한 도킹 방식의 자동 착륙 시스템을 제안하였다. 파도, 바람 등 해상 환경에 의해 영향을 받더라도 드론이 착지할 수 있도록 유도하고, 결합(Docking) 장치를 통해 순간적으로 고정할 수 있다. 3-DoF 모션 플랫폼으로 함상의 거동을 모사하여 착륙 시험을 수행하였으며, 도킹 방식 자동 착륙 시스템의 운용·활용 가능성을 확인하였다.

무인헬리콥터를 이용한 항공방제시스템 개발(I) - 항공방제시스템 구축을 위한 기초 분무특성 - (Development of Aerial Application System Attachable to Unmanned Helicopter - Basic Spraying Characteristics for Aerial Application System -)

  • 강태경;이채식;최덕규;전현종;구영모;강태환
    • Journal of Biosystems Engineering
    • /
    • 제35권4호
    • /
    • pp.215-223
    • /
    • 2010
  • In order to develop an precision aerial pesticide application system to be attached to an unmanned helicopter which can be applied to small lots of land, this study analyzed the flowing and spraying characteristics of the spray droplets by the main rotor downwash by setting the application conditions at the flight altitude of 3 m, the diameter of main rotor of 3.1 m, the boom length of around 2.8 m, and the spraying rate of 8 L/ha. The results of this study are summarized below. Through analysis of the covering area ratio of the spray droplets by main rotor downwash by nozzle type, boom with tilt angle and height, it was found that the covering area ratio of the twin flat-fan nozzle of around 25% was more uniform than other types of nozzle, also boom with $10^{\circ}$ tilt angle and spraying height of 3 m was shown to be the appropriate conditions for aerial application of pesticides. It was found that the nozzle position to minimize the scattering loss of spray droplets due to vortex phenomenon at both ends of the main rotor was around 10 cm from the end of the main rotor. An application test for the aerial pesticide application system attached to the HUA-ACEI unmanned helicopter developed by the Rural Development Administration showed that the range of covering area ratio of the spray droplets was 10-25%, and the spraying width was approximately 7 m when over 10% of covering area ratio was considered for valid spraying.

HMD를 이용한 사용자 자세 기반 항공 촬영용 쿼드로터 시스템 제어 인터페이스 개발 (A Posture Based Control Interface for Quadrotor Aerial Video System Using Head-Mounted Display)

  • 김재승;정종민;김한솔;황남웅;최윤호;박진배
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1056-1063
    • /
    • 2015
  • In this paper, we develop an interface for aerial photograph platform which consists of a quadrotor and a gimbal using the human body and the head posture. As quadrotors have been widely adopted in many industries such as aerial photography, remote surveillance, and maintenance of infrastructures, the demand of aerial video and photograph has been increasing remarkably. Stick type remote controllers are widely used to control a quadrotor, but this method is not an intuitive way of controlling the aerial vehicle and the camera simultaneously. Therefore, a new interface which controls the serial photograph platform is presented. The presented interface uses the human head movement measured by head-mounted display as a reference for controlling the camera angle, and the human body posture measured from Kinect for controlling the attitude of the quadrotor. As the image captured by the camera is displayed on the head-mounted display simultaneously, the user can feel flying experience and intuitively control the quadrotor and the camera. Finally, the performance of the developed system shown to verify the effectiveness and superiority of the presented interface.

접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션 (An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV)

  • 이승진;이정민;안정우;박진용
    • 한국시뮬레이션학회논문지
    • /
    • 제27권4호
    • /
    • pp.19-26
    • /
    • 2018
  • 공중투하형 무인비행체는 비행성능의 극대화 및 모기체 탑재시의 소요공간 최소화를 위하여 접이식 직렬날개를 주로 사용한다. 이러한 접이식 직렬날개는 전방날개의 후류에 의한 후방날개 간섭문제, 날개 전개시 전후방 날개에 걸리는 피봇 모멘트의 불균형 등 일반적인 형태의 고정익 비행체와 다른 독특한 공기역학적 문제를 가지고 있다. 이에 본 논문에서는 유한체적법 기반의 전산유체역학을 통하여 여러 경우에 대하여 모델링 및 시뮬레이션을 수행하였으며 접이식 직렬날개 방식 비행체의 여러 공기역학적 현상에 대해 분석하였다. 그 결과 받음각 변화에 따른 전방날개에 의한 후류영향을 최소화하기 위하여 전방 날개를 후방날개보다 수직방향으로 높게 설치할 필요가 있었다. 또한 공력에 의한 피봇모멘트를 고려시 전방날개에 비하여 후방날개가 훨씬 빠른 속도로 펼쳐질 수 있으므로 날개 펼침 기구 개발 시 이에 대한 고려가 필요함을 확인하였다.

Potential Biotypes in Korean Isolates of Bipolaris cactivora Associated with Stem Rot of Cactus

  • Kim, Jeong-Ho;Jeoung, Myoung-Il;Hyun, Ick-Hwa;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제20권3호
    • /
    • pp.165-171
    • /
    • 2004
  • A total of 62 isolates of Bipolaris cactivora causing cactus stem rots were isolated from major cactus-growing areas in Korea. Colony morphology of the isolates on potato-dextrose agar was differentiated into aerial (CA) and non-aerial mycelial types (CB). CA had profound aerial mycelium with grayish brown (CA-l), light brownish (CA-2), and brownish (CA-3) pigmentations; respectively, while CB had dark brownish pigmentations. CA had conidia of less dark pigmentation and acute terminal end. CB had darker and more round-end conidia. Twenty-eight amplified fragments were produced by polymerase chain reaction (PCR) with a set of 2 random primers. The sizes of amplified DNA fragments ranged approximately from 0.1 to 2.3 kb. The isolates were classified into 2 major genomic DNA random amplified polymorphic DNA (RAPD) groups at the genomic similarity of 97.7% and 95.1%, respectively. Cluster analysis of genetic similarity among the isolates generated a dendrogram that clearly separated all isolates into SA or SB. This result suggests that there may be two morphotypes of B. cactivora in Korea that may differ in their genetic constitutes.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

CONSIDERATION OF THE RELATION BETWEEN DISTANCE AND CHANGE OF PANEL COLOR BASED ON AERIAL PERSPECTIVE

  • Horiuchi, Hitoshi;Kaneko, Satoru;Sato, Mie;Ozaki, Koichi;Kasuga, Masao
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.695-698
    • /
    • 2009
  • Three-dimensional (3D) shape recognition and distance recognition methods utilizing monocular camera systems have been required for field of virtual-reality, computer graphics, measurement technology and robot technology. There have been many studies regarding 3D shape and distance recognition based on geometric and optical information, and it is now possible to accurately measure the geometric information of an object at short range distances. However, these methods cannot currently be applied to long range objects. In the field of virtual-reality, all visual objects must be presented at widely varying ranges, even though some objects will be hazed over. In order to achieve distance recognition from a landscape image, we focused on the use of aerial perspective to simulate a type of depth perception and investigated the relationship between distance and color perception. The applicability of our proposed method was demonstrated in experimental results.

  • PDF

UAV(Unmanned aerial vehicle)를 활용한 하천 녹조 모니터링 평가 (Monitoring algal bloom in river using unmanned aerial vehicle(UAV) imagery technique)

  • 김은주;남숙현;구재욱;황태문
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.573-581
    • /
    • 2018
  • The purpose of this study is to evaluate the fixed wing type domestic UAV for monitoring of algae bloom in aquatic environment. The UAV used in this study is operated automatically in-flight using an automatic navigation device, and flies along a path targeting preconfigured GPS coordinates of desired measurement sites input by a flight path controller. The sensors used in this study were Sequoia multi-spectral cameras. The photographed images were processed using orthomosaics, georeferenced digital surface models, and 3D mapping software such as Pix4D. In this study, NDVI(Normalized distribution vegetation index) was used for estimating the concentration of chlorophyll-a in river. Based on the NDVI analysis, the distribution areas of chlorophyll-a could be analyzed. The UAV image was compared with a airborne image at a similar time and place. UAV images were found to be effective for monitoring of chlorophyll-a in river.