• Title/Summary/Keyword: Aeration rate

Search Result 415, Processing Time 0.027 seconds

A Comparison Study on the Simultaneous Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Reactor and Sequencing Batch Biofilm Reactor (연속 회분식 반응기와 연속 회분식 생물막 반응기의 유기물, 질소 및 인의 동시 제거에 관한 비교 연구)

  • Park Young-Seek;Kim Dong-Seog
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.152-159
    • /
    • 2005
  • Laboratory scale experiments were conducted to study the applicability, and to compare the performance of two types of sequencing batch reactor (SBR)systems, a conventional SBR and sequencing batch biofilm reactor (SBBR) on the biological nitrogen and phosphorus removal. The nitrification rate in SaR was higher than that in SBBR both in high influent TOC concentration. The denitrification was completed at the first non-aeration period in SBR, however, the additional non-aeration period should be installed or the first aeration period should be extended more in order to complete the nitrogen removal in SBBR. The time at the first aeration period was more needed as about 4-5 h in order to uptake all the released $PO_4^{3-}\;-P$ at the first non-aeration period. SBBR needed more operation time, especially the first aeration time, than SBR at the high influent TOC concentration in order to complete nitrogen and phosphorus removal.

Effects of Aeration Temperature and Period after BA Treatment on Growth and Lateral Root Formation of Soybean Sprouts (BA 처리 직후의 Aeration 온도와 기간이 콩나물의 생장과 세근발생에 미치는 영향)

  • 강진호;전병삼;조용준;박철종;윤수영;전승호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.216-221
    • /
    • 2004
  • Treatment effect of benzyladenopurine (BA) used to block the lateral roots formed on soybean sprouts should be influenced by its applying methods. This study was done to check the effects of temperature and period from seed imbibition into 2 ppm BA solution to the first watering for sprout culture on growth and morphology of soybean sprouts. Imbibed three cultivar (cv. Pungsannamulkong, Sowonkong and Junjery) seeds for 5 houys into 2 ppm BA solution were placed under different temperatures (AT; 20, 30, $40^{\circ}$) and periods (AP; 0, 1, 2, 3, 4 hours). On the 6th day, the soybean sprouts were classified by 4 categories on the base of hypocotyl length; >7cm, 4 to 7cm), < 4cm and non-germination to calculate their composition rates, number of lateral roots, lengths of hypocotyl and root diameters at middle and hook of hypocotyl, and fraction dry weights were measured. Germination and growth responses of the cultivars were changed by AT and AP treatments. The responses, lateral root formation and fresh weights were, however, mainly affected by the cultivars used rather than Af treatment. Rate of the sprouts which formed lateral roots was decreased with increased periods to 4 hours, but their number per sprout was not different between the treatments of longer than 3 hours. Lengths of hypocotyl and root organ and total fresh weights were the highest in an hour AP treatment although longer than 3 hour AP treatments did not showed the significant difference in the lengths. Conclusionally AP treatment was more important than Af one in seed aeration for soybean sprout culture immediately after imbibition into BA solution, and was done at least for 3 hours.

Optimization of Fermentation Conditions for the Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae using Response Surface Methodolgy (단수수 착즙액으로부터 에탄올 생산을 위한 반응표면분석법을 이용한 효모 발효조건 최적화)

  • Cha, Young-Lok;Park, Yu-Ri;Kim, Jung-Kon;Choi, Yong-Hwan;Moon, Youn-Ho;Bark, Surn-Teh;An, Gi-Hong;Koo, Bon-Cheol;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • Optimization of initial total sugar concentration of sweet sorghum juice, aeration time and aeration rate on ethanol production was performed by response surface methodology (RSM). The optimum conditions for ethanol production from concentrated sweet sorghum juice were determined as follows: initial total sugar concentration, 21.2 Brix; aeration time, 7.66h; aeration rate, 1.22 vvm. At the optimum conditions, the maximum ethanol yield was predicted to be 91.65% by model prediction. Similarly, 92.98% of ethanol yield was obtained by verification experiment using optimum conditions after 48 h of fermentation. This result was in agreement with the model prediction.

Study on Operational Factors in a Nitrite-Accumulating Submerged Membrane Bioreactor

  • Yoo Ik-Keun;Lim Kyoung-Jo;Lee Won-Sik;Kim Dong-Jin;Cha Gi-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.469-474
    • /
    • 2006
  • Partial nitrification blocking of the oxidation of nitrite ($NO_{2}^{-}$) to nitrate ($NO_{3}^{-}$) has cost-efficient advantages such as lower oxygen and organics demand for nitrification and denitrification, respectively. A nitrifying membrane bioreactor of submerged type was operated for the treatment of synthetic ammonium wastewater with the purpose of nitrite build-up without affecting the efficiency of ammonium oxidation. A high ammonium concentration (1,000 mg/l) was completely converted to nitrate at up to 2 kg $N/m^3$ day under sufficient aeration. The control of pH under sufficient aeration was not a reliable strategy to maintain stable nitrite build-up. When the dissolved oxygen concentration was kept at 0.2-0.4 mg/l by adjusting the aeration rate, about 70% of nitrite content was obtained with ammonium oxidation efficiency higher than 93%. The increase of suction pressure due to membrane fouling was not significant under lowered aerating environment over a 6-month period of operation. The composition of nitrifier community, including relative abundance of nitrite oxidizers in a nitrite-accumulating condition, was quantified by fluorescence in situ hybridization analysis.

Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations

  • Karn, Ashish;Ellis, Christopher R;Milliren, Christopher;Hong, Jiarong;Scott, David;Arndt, Roger EA;Gulliver, John S
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • Aerating hydroturbines have recently been proposed as an effective way to mitigate the problem of low dissolved oxygen in the discharge of hydroelectric power plants. The design of such a hydroturbine requires a precise understanding of the dependence of the generated bubble size distribution upon the operating conditions (viz. liquid velocity, air ventilation rate, hydrofoil configuration, etc.) and the consequent rise in dissolved oxygen in the downstream water. The purpose of the current research is to investigate the effect of location of air injection on the resulting bubble size distribution, thus leading to a quantitative analysis of aeration statistics and capabilities for two turbine blade hydrofoil designs. The two blade designs differed in their location of air injection. Extensive sets of experiments were conducted by varying the liquid velocity, aeration rate and the hydrofoil angle of attack, to characterize the resulting bubble size distribution. Using a shadow imaging technique to capture the bubble images in the wake and an in-house developed image analysis algorithm, it was found that the hydrofoil with leading edge ventilation produced smaller size bubbles as compared to the hydrofoil being ventilated at the trailing edge.

Effect of Aeration Intensity on the Treatment Efficiency in Submerged Biofilm Process (침지형 생물막공법에 있어서 포기강도가 처리효율에 미치는 영향)

  • 박종웅
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 1989
  • An aerated submerged biofilm reactor is the reactor in which influent organic substrates are aerobically oxidized by suspended biomass and attached biomass of biofilm grown on the surface of submerged media. The objective of this study was to investigate the effect of aeration intensity on microbial characteristics and treatment efficiency in submerged biofilm process. In the organic loading rate (4.3kg BOD/$m^{3} \cdot day$), biofilm thickness (420-780$\mu$m) and attached biomass(1.79-2.94mg/cm$^{2}$) increased as the aeration intensity increased (2-8m$^{3}$ air/$m^{2} \cdot hr$), but biofilm density decreased (42.25-37.69mg/cm$^{3}$). The minimum aeration intensity for prevention of deposited biomass was 2m$^{3}$ air/$m^{2} \cdot hr$. The minimum dissolved oxygen of 2.5mg/l had to be maintained for improved efficiency.

  • PDF

A Study on Radon Removal Efficiencies in Drinking Water according to the Variations of Water Temperature and Aeration Rate in Small Waterwork Facility (소규모 간이상수도 시설에서 수온과 폭기량 변화에 따른 수중 라돈 제거 효율에 관한 연구)

  • Kim, Hyun Gu;Choi, Jung Soo;Joo, Hyun Jong;Kim, Sung Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.52-57
    • /
    • 2013
  • Radon, which is one of the radioactive elements in the natural world, exists in the atmosphere and water. When this element inflows into the human body, it carries the risks of developing lung cancer and stomach cancer. Therefore, in this study, an effective 10 L scaled reactor was produced to mitigate radon in water and the radon mitigation efficiency in water following the changes in water temperature and amount of aeration were evaluated. Based on this, the radon mitigation efficiency (SRRR; Specific radon removal rate) was derived per unit air volume. According to the study result, when water temperature increased from $10^{\circ}C$ to $16^{\circ}C$, the SRRR value increased from 95 $nCi/m^3{\cdot}L$ to 134.4 $nCi/m^3{\cdot}L$, and when the amount of aeration increased from 0.2 L/min to 1 L/min, the SRRR value decreased from 198.1 $nCi/m^3{\cdot}L$ to 72.2 $nCi/m^3{\cdot}L$. Therefore, based on the experimental results, it is considered that it can be applied as a examination factor and objective indicator during the design of future radon-in-water mitigation systems.

Assessment of Sludge Solubilization by Aeration and Zero-valent Iron As a Pre-treatment for Anaerobic Digestion (공기주입과 영가철을 이용한 하수슬러지 가용화 연구)

  • Kim, Yong-Jun;Park, Jin-Kyu;Tameda, Kazuo;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • The reaction of zero-valent iron (ZVI) with oxygen can produce reactive oxidants capable of oxidizing organic compounds. Thus, the aim of this study was to investigate the effect of pre-treatment on sludge solubilization by ZVI and aeration. The results demonstrated that the aeration pre-treatment with ZVI method was more effective than the only aeration for improving sludge solubilization, indicating that ZVI increased the extent of sludge solubilization. In addition, removal rate of $NH_3-N$ by ZVI and aeration was found to be 34%, while only aeration was 24%. Thus, ZVI and aeration can be employed as an efficient pre-treatment option to achieve higher sludge solubilization and decrease the toxic effect of $NH_3-N$ for sludge digestion.

Effect of Agitation, Aeration and Scale-up on Mycelial Morphology During Liquid Culture of Ganoderma lucidum (영지의 액체배양 중 균사형태에 미치는 통기.교반의 영향 및 Scale-up)

  • Lee, Hak-Su;Lee, Ki-Young;Choi, Sang-Yun;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2011
  • This study was carried out to investigate the effects of agitation, aeration and scale-up on the mycelial growth, exo-polysaccharide (EPS) production, and mycelial morphology in the liquid culture of Ganoderma lucidum. A correlation between roughness and operating variables was also studied to scale-up the liquid culture of G. lucidum in a jar fermenter. When the agitation speed or aeration rate increased, the morphological form was changed from rough pellet to smooth pellet form. Increase of the agitation and aeration reduced the mycelial roughness. On the other hand, in the case of pellet size, it was not affected by aeration. The higher EPS production was obtained at approximately 17% of roughness and mycelial pellet size of 3~5 mm. The morphology at each fermenter was closely correlated with kLa value, and it was found that similarity of morphology would be used as a criteria of scale-up for liquid culture of G. lucidum.

Nutrient Removal Using Fermented Organic Acids Derived from the Primary Sludge in the Intermittent Aeration Activated Sludge Process

  • Weon, Seung-Yeon;Lee, Sang-Il;Lee, Chan-Won
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.213-218
    • /
    • 2011
  • The two-stage intermittent aeration activated sludge process (IAP) and dynamic-flow intermittent aeration activated sludge process (DFP) were investigated for the nutrient removal of domestic wastewater. Three sets of IAP and one set of DFP were operated. The fermented settled sludge taken from the primary settling tank was added to two IAP and one DFP as an external electron donor, with one IAP, in which an external carbon source was not added, as a control. All the systems were operated at a sludge retention time of 20 days and a hydraulic retention time of 12 hr. A Higher denitrification rate was observed with the fermented settled sludge for the denitrification compared to the process without the addition of the organic source. The result indicates that the fermented acid from the primary domestic sludge has been proved to be an excellent electron donor for denitrification and biological phosphorus removal with IAP and DFP in treating relatively low C/N ratio(Carbon / Nitrogen ratio) wastewater. Phosphate accumulating organisms have a capability of competing with denitrifiers in the presence of volatile organic acids under anoxic conditions.