• Title/Summary/Keyword: Aeration rate

Search Result 415, Processing Time 0.041 seconds

Optimization of Cultural Conditions for Mycelial Growth and Exo-Polysaccharide Production in Jar Fermentation by Fomitopsis pinicola

  • Cha, Wol-Suk;Jilu, Ding;Lee, Choon-Beom;Nam, Hyung-Geun;Lee, Jun-Han;Maeng, Jeung-Moo;Lim, Hwan-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.187-191
    • /
    • 2005
  • The Study was carried out to investigate in the optimal mycelial growth and Exo-Polysaccharides of Fomitopsis pinicola. Jar fermentations were carried out to optimize the culture conditions for mycelial growth and exo- polysaccharide production. The optimal agitation speed and aeration rate were 200 rpm and 1.5 v.v.m., respectively. Under optimal culture conditions, the maximum mycelial growth and exo-polysaccharide production after 11 days with a 5 L jar fermenter containing the optimized medium were 10.21 g/L and 3.56 g/L, respectively. However, the fundamental information obtained this study is insufficient in the development of a efficient process for mycelial growth and exe-polysaccharide production from Fomitopsis pinicola.

  • PDF

Effect of Environmental Factors on By-products Production in Ethanol Fermentation (에탄올 발효에서 부산물 생성에 미치는 환경인자의 영향)

  • 김진현;유영제
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.446-451
    • /
    • 1993
  • In ethanol fermentation, by-products such as glycerol, acetic acid and lactic acid are produced along with ethanol. The effects of culture conditions on cell growth ethanol production and by-products biosynthesis were investigated in ethanol fermentation using S. cerevisiae. With increasing aeration rate or yeast extract concentration, ethanol and by-products biosynthesis decreased while final cell mass increased. With increasing glucose concentration or decreasing temperature, final cell mass, ethanol and by-products concentrations all increased. The optimal pH for the cell growth, ethanol and by-products productions was found to be pH 4.5. By-products biosynthesis was found, in general, to proceed with the ethanol biosynthesis. The results can be applied for the optimization of ethanol fermentation and for the recovery and purification of ethanol from the culture broth.

  • PDF

Determination of Optimum Conditions for Xylose Fermentation by Pichia stipitis (Pichia stipitis에 의한 Xylose 발효의 최적조건 결정)

  • 권순효;유연우서진호
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.452-456
    • /
    • 1993
  • This study was carried out to optimize the fermentation conditions for direct alcohol fermentation of xylose by Pichia stipitis CBS 5776. The best cell growth and the ethanol production were obtained under 0.05 VVM aeration and 300rpm agitation at $30^{\circ}C$ using 100 g/l xylose medium of the initial pH 5.0. In the above condition, the maximum specific growth rate and maximum cell concentration were 0.14hr-1 and $1.3 \times109$ cells/ml, respectively. Pichia stipitis CBS 5776 also produced 40.2g/l ethanol utilizing about 96% of 100g/l xylose after 72hr fermentation. At this point, the overall volumetric ethanol productivity was 0.56g/1-hr and the ethanol yield was 0.42 g-ethanol/g-xylose consumed, which corresponds to 82% of the theoretical yield.

  • PDF

Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration

  • Kim, Yong Sang;Lee, Sang-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • The growth characteristics of Spirulina platensis were investigated using four photo-bioreactors with $CO_2$-mixed air flows. Each reactor was operated under a specific condition: 3% $CO_2$ at 50 mL/min, 3% $CO_2$ at 150 mL/min, 6% $CO_2$ at 50 mL/min, and 6% CO2 at 150 mL/min. The 3% $CO_2$ at 150 mL/min condition produced the highest algal growth rate, while the 6% $CO_2$ at 150 mL/min conditioned produced the lowest. The algal growth performance was suitably assessed by the linear growth curve rather than the exponential growth. The medium pH decreased from 9.5 to 8.7-8.8 (3% $CO_2$) and 8.4-8.5 (6% $CO_2$), of which trends were predicted only by the pH-carbonate equilibrium and the reaction kinetics between dissolved $CO_2$ and $HCO_3{^-}$. Based on the stoichiometry between the nutrient amounts and cell elements, it was predicted that depleted nitrogen (N) at the early stage of the cultivation would reduce the algal growth rates due to nutrient starvation. In this study, use of the photobioreactors capable of good light energy distribution, proper ranges of $CO_2$ in bubbles and medium pH facilitated production of high amounts of algal biomass despite N limitation.

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.

Membrane Concentrate Thickening by Hollow-fiber Microfilter in Drinkin Water Treatment Processes

  • 이병호
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.100-100
    • /
    • 1991
  • A novel system to thicken the concentrated colloidal solution from membrane water treat-ment processes was developed. A hollow-fiber microfilter(hydrophilic polyethylene nominal pore size 0.1 μm total surface area 0.42 m2) was installed in an acrylic housing that has an aeration port 5 cm below the membrane and a clarifier in the bottom. The concentrate was uniformly supplied from the top of the housing. Bacuum filtration caused downward flow of concentrate and as a result thickening interface. The addition of poly-aluminum chloride (PAC) resulted in rapid increase of trans-membrane pressure (TMP) and in no improvement of the filtered water turbidity and thickening process. Two types of con-centrate and concentrate turbidity had little effect on the increase of TMP and concentrate thickening. It was observed that for the same height of membrane housing membrane surface area to housing volume (A/V) ratio had significant effect on the increase of TMP. When the housing volume was increased ten times the increasing rate of TMP was three times faster as compared to the original housing. A hydraulic model successfully simulated the formation and sedimentation of thickening interface.

A Study on Variation of Colony Forming Units of Fungi by Input Ratios of Wood Chips in Aerobic Composting of Food Wastes (음식물류폐기물의 호기성 퇴비화에 있어서 목재세편의 투입비에 따른 곰팡이의 균락형성단위의 변화에 관한 연구)

  • Park, Seok-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.451-455
    • /
    • 2007
  • This study was performed to evaluate the effects of input ratios of bulking material in aerobic composting of food wastes on variation of colony forming units(CFU) of fungi. Wood chips were used as a bulking material. Volume ratios of food wastes to wood chips in reactor of Control, WC-1 and WC-2 were 10/0, 10/5 and 10/10, respectively. Reactors were operated for 24 days with I hour stirring by 1rpm and 2 hours of the forced aeration rate of $80L/min{\cdot}m^3$ per day. WC-2 reached high temperature range faster than WC-1, and the maximum temperature of WC-2 was higher than that of WC-1. WC-2 reached high pH range faster than WC-1. and the maximum pH of WC-2 was higher than that of WC-1. WC-2 reached high Log(CFU/gram) range faster than WC-I, and the maximum Log(CFU/gram) of WC-2 was higher than that of WC-1. These all mean that the reaction velocity of composting of WC-2 was faster than that of WC-1. The profile of fungi changes in Log(CFU/gram) was similar to that of temperature changes (r=0.8861) not pH changes (r=0.1631).

Effect of pH on the elaboration of pullulan and the production of high molecular weight pullulan by Aureobasidium pullulans.

  • Kim, Jeong-Hwa;Zhu, Il-hui;Kim, Mi-Ryeong;Lee, Ji-Hyeon;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.380-383
    • /
    • 2000
  • The effect of on the cell growth, the elaboration of pullulan, the morphology and were the effect of on the molecular weight of pullulan were investigated. A. pullulans showed maximum pullulan production when initial pH 6.5 was 11.98 g/l in shake-flask culture. In batch culture, the maximum pullulan production of 15.16 g/l was obtained at an aeration rate of 0.5 vvm. The mixture of yeast-like form and mycelial form of cells was found at the constant pH 4.5, at which condition, the elaboration of pullulan was high, about 13.31 g/l. However, pullulan with its higher molecular weight (>1,000,000) was produced at the constant pH 6.5.

  • PDF

Amylase Production from Haloarcular sp. EH-1 (고호염성 Haloarcular sp. EH-1으로 부터 amylase 생산)

  • 정명주
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.570-576
    • /
    • 2002
  • The extremely halophilic archaebacterium Haloarcular sp. EH-1 was isolated from solar salts. Amylae production from Halonrcular sp. EH-1 have been studied. The results obtained were as follows. The optimal medium composition for the production of amylase from Haloarcular sp. EH-1 were soluble starch 1.5%, yeast extract 1.0%, MgSO$_4$ 7h$_2$O 2.0%, KCI 0.1%, NaCl 25% (pH 7.5). The incubation temperature, aeration rate and agitation speed were 4$0^{\circ}C$, 100 $m\ell$ medium / 500 $m\ell$ shaking flask, and 110 rpm. The cell growth and enzymatic activity was highest at 9 days of incubation. So amylase production appeared to be a growth-related phenomenon.