• Title/Summary/Keyword: Aeration Volume

Search Result 99, Processing Time 0.033 seconds

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.

Compost of Swine Manure Slurry Using the Thermophilic Aerobic Oxidation (TAO) Syst

  • Lee, W.I.;Tsujii, H.;Lee, M.G.;Cha, G.C.;Chung, J.C.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • A field-scale(8.6${\times}$2.5${\times}$2.4 m) and pilot-scale(1.39${\times}$0.89${\times}$0.89 m) thermophilic aerobic oxidation (TAO) units were installed to investigate the volume reduction efficiency of slurry, by varying the aeration and treatment temperature of swine manure, and the collected liquid was evaluated as a liquid fertilizer. In the field-scale unit, the aeration level and numbers of foam breakers made different effects on the slurry volume and temperature in the TAO system. The experiments were peformed for three cases, using different levels of aeration and numbers of foam breakers: Treat-A (aeration rate; 120 ㎥ air/hr using 2 air pumps and 2 foam breakers), Treat-B (aeration rate; 180 ㎥ air/hr using 3 air pumps and 3 foam breakers) and Treat-C (aeration rate; 180 ㎥ air/hr using 3 air pumps and 4 foam breakers). With the same input volume (5 ㎥/day) of swine manure slurry, the resulting liquid levels, temperatures and evaporation rates were 50∼100 cm, 31∼$64^{\circ}C$ and 55 $\ell/m^2$/day for Treat-A; 40∼90 cm, 29∼$52^{\circ}C$ and 75 $\ell/m^2$/day for Treat-B; and 40∼70 cm, 45∼$54^{\circ}C$ and 120.0 $\ell/m^2$/day for Treat-C. In the pilot-scale unit, semi-continuous flow of swine manure slurry was introduced. 50 $\ell$ every 2hr(T-1), 50 $\ell$ every 3hr(T-2), 40 $\ell$ every 2hr (T-3) and 60 $\ell$ every 4hr (T-4) within 24 hours, in order to find the maximum slurry volume reduction conditions.

  • PDF

Evaluation of Diagnosis-based Control Strategy for NH4-N and NOX-N Removal of a Full-scale Wastewater Treatment Process (하수처리시설의 질산화 진단기반 제어 방법의 개발 및 실규모 플랜트 적용을 통한 평가)

  • Kim, Yejin;Kim, Hyosoo
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.447-456
    • /
    • 2018
  • In this research, the target process was a modified type of a conventional aeration tank with four different influent feeding points and alternated aeration to obtain nitrogen removal. For more accurate switching of influent feeding, the process was operated under a designed control strategy based on monitoring of $NH_4-N$ and $NO_X-N$ concentrations in the tank. However, the strategy did have some limitations. For example, it was not sensitive to detecting the end of each reaction when losing the balance between nitrification and denitrification of each opposite part of biological tank. To overcome the limitations of the existing control strategy, a diagnosis-based control strategy was suggested in this research using the diagnosis results classified as normal (N), ammonia accumulation (AA) and nitrate accumulation (NA). Using the pre-designed rules for control actions, the aeration and volume of the aerated part of the reactor could be increased or decreased at a fixed mode time. In simulations of the suggested diagnosis-based control strategy, the $NH_4-N$ and $NO_X-N$ removal rates in the reactor were maintained at higher levels than those of the existing control strategy.

Effects of Dissolved Oxygen and Agitation on Production of Serratiopeptidase by Serratia Marcescens NRRL B-23112 in Stirred Tank Bioreactor and its Kinetic Modeling

  • Pansuriya, Ruchir C.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.430-437
    • /
    • 2011
  • The effects of the agitation and aeration rates on the production of serratiopeptidase (SRP) in a 5-L fermentor (working volume 2-l) were systematically investigated using Serratia marcescens NRRL B-23112. The dissolved oxygen concentration, pH, biomass, SRP yield, and maltose utilization were all continuously measured during the course of the fermentation runs. The efficiencies of the aeration and agitation were evaluated based on the volumetric mass transfer coefficient ($K_La$). The maximum SRP production of 11,580 EU/ml with a specific SRP productivity of 78.8 EU/g/h was obtained with an agitation of 400 rpm and aeration of 0.075 vvm, which was 58% higher than the shake-flask level. The $K_La$ for the fermentation system supporting the maximum production (400 rpm, 0.075 vvm) was 11.3 $h^{-1}$. Under these fermentor optimized conditions, kinetic modeling was performed to understand the detailed course of the fermentation process. The resulting logistic and Luedeking-Piret models provided an effective description of the SRP fermentation, where the correlation coefficients for cell growth, SRP formation, and substrate consumption were 0.99, 0.94, and 0.84, respectively, revealing a good agreement between the model-predicted and experimental results. The kinetic analysis of the batch fermentation process for the production of SRP demonstrated the SRP production to be mixed growth associated.

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Composting Characteristics of a Continuous Aerated Pilot-scale Reactor Vessel for Commercial Composting (상업용 퇴비화를 위한 연속 통기식 파이로트 규모 반응조의 퇴비화 특성)

  • 홍지형;최병민
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.149-160
    • /
    • 1998
  • Hog manure slurry amended with sawdust was composted in pilot-scale reactor vessels using continuous aeration nuder different C/N ratios and pH conditions during composting high rate (decomposition) process. For each material two replicated piles were built and monitored over a period of three weeks. The compost piles had an initial volume of 0.18 ㎥. In this study we evaluated the temperature in compost O2 and CO2 evolution, aeration rate, NH3 concentration etc. and investigated the stability of compost during composting high rate process. According to measured results, while the maximum NH3 concentration during composting high rate process. According to measured results, while the maximum NH3 concentration during composting high rate was in the range of 213 to 412 ppm on 5th day which was near the optimum C/N(22∼24) and pH(7.5∼7.9). And then, the NH3 concentration reduced to between 22∼26 ppm by 13th day. The maximum NH3 concentration for the lower C/N(18∼19) and pH value of 6 reached 574∼1,063 ppm by the 16th through 11th days and the NH3 concentration during continuous aerated composting high rate process, it was more important to manage NH3 gas so that compost odor is reduced.

  • PDF

Effects of Rice Straw as Bulking Materials on Aerobic Composting of Food Wastes (팽화재로서의 볏짚이 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • This study was performed to examine the effects of rice straw as bulking materials on temperature, pH, weight and volume reduction, porosity, C/N ratio, salinity, and conductivity in aerobic composting of food wastes. Volume ratios of food wastes to rice straw in reactor control, RS-1, RS-2, RS-2 and RS-4 were 4:0, 4:1. 4:2. 4:3 and 4:4, respectively. Reactors were operated for 24days with 1 hour stirring by lrpm and 2hours aeration per day. The values of pH of food wastes and rice straw were 4.39 and 7.4, respectively. The lowering of the volume ratio of food wastes to rice straw resulted in the high reaction temperature and the fast weight and volume reduction rates. C/N ratio in control was larger than that in rice straw containing reactors. Salinity and conductivity in reactors were condensed and increased by reaction days.

A Study on the Trapping Phenomenon and Relief Port Position of Oil Hydraulic Gear Pump (유압 기어펌프의 폐입현상과 릴리프 홈의 위치에 관한 연구)

  • 김철호;노춘경;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.133-140
    • /
    • 1999
  • It is possible for a volume of fluid to become trapped in the space between two adjoining teeth ad the tips of the teeth engage in Gear Pump with involute teeth. This trapped fluid leads to several harmful results, for example fluctuating pressure and aeration of pump. In this study, hence, theoretical and experimental analyses on this 'Trapping' were accomplished as using relief port(or escape port), one of the means for avoid it. Also, the grasp and analysis on variational type of the internal pressure in parallel with above experiments are achieved so that hydrodynamic behaviors in pump were contemplated.

  • PDF

Biological Phosphorus Removal using the Sequencing Batch Reactor Process (연속회분식반응조를 이용한 생물학적인 인 제거 연구)

  • Yang, Hyung-Jae;Shin, Eung-Bai;Chung, Yun-Chul;Choi, Hun-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.533-539
    • /
    • 2000
  • A bench-scale reactor using SBR process was experimented with an synthetic wastewater. The main purpose of this investigation was to evaluate applicability in the field and process removal efficiencies in terms of BOD and T-P and its corresponding kinetic parameters. Removal rate of phosphorus was 77% in terms of total phosphorus. Effluent concentrations were $9.8mg/{\ell}$ BOD and $1.1mg/{\ell}$ T-P. Effluent quality was maintained consistently stable by controlling decant volume and operating cycles. The efficiency for phosphorus removal was increased due to decrease in BOD-SS loading value in the range of $0.25{\leq}$aeration time ratio${\leq}0.52$.

  • PDF

STUDY ON THE EFFECT OF AERATED LUBRICANT ON THE JOURNAL TRACES IN THE ENGINE BEARING CLEARANCE

  • JANG S.;PARK Y.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.421-427
    • /
    • 2005
  • This work analyzes the behaviors of aerated lubricant in the gap between con-rod bearing and journal. It is assumed that the film formation with aerated lubricant is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant for the formation of bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. These two major factors surprisingly increase the load capacity in some ranges of bubble sizes and densities. Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio in the lubricant. From the calculated load capacity by solving modified Reynolds' equation, journal locus is computed with Mobility method after comparing it with the applied load at each time step. The differences of journal orbits between aerated and pure lubricants are shown in the computed results.