• Title/Summary/Keyword: Adversarial Networks

Search Result 214, Processing Time 0.026 seconds

Deep Learning Based Fake Face Detection (딥 러닝 기반의 가짜 얼굴 검출)

  • Kim, DaeHee;Choi, SeungWan;Kwak, SooYeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2018
  • Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.

A Study on Virtual Tooth Image Generation Using Deep Learning - Based on the number of learning (심층 학습을 활용한 가상 치아 이미지 생성 연구 -학습 횟수를 중심으로)

  • Bae, EunJeong;Jeong, Junho;Son, Yunsik;Lim, JoonYeon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Purpose: Among the virtual teeth generated by Deep Convolutional Generative Adversarial Networks (DCGAN), the optimal data was analyzed for the number of learning. Methods: We extracted 50 mandibular first molar occlusal surfaces and trained 4,000 epoch with DCGAN. The learning screen was saved every 50 times and evaluated on a Likert 5-point scale according to five classification criteria. Results were analyzed by one-way ANOVA and tukey HSD post hoc analysis (α = 0.05). Results: It was the highest with 83.90±6.32 in the number of group3 (2,050-3,000) learning and statistically significant in the group1 (50-1,000) and the group2 (1,050-2,000). Conclusion: Since there is a difference in the optimal virtual tooth generation according to the number of learning, it is necessary to analyze the learning frequency section in various ways.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

A Study on Random Reconstruction Method of 3-D Objects Based on Conditional Generative Adversarial Networks (cGANs) (cGANs(Conditional Generative Adversarial Networks) 기반 3차원 객체의 임의 재생 기법 연구)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.157-159
    • /
    • 2019
  • Hologram technology has been actively developed in terms of generation, transmission, and reproduction of 3D objects, but it is currently in a state of rest because of various limitations. Beyond VR and AR, the pseudo-hologram market is growing at an intermediate stage to meet the needs of new technologies. The key to the technology of hologram is to generate vast 3 dimensional data in the form of a point cloud, transmit the vast amount of data through the communication network in real time, and reproduce it like the original at the destination. In this paper, we propose a method to transmit massive 3 - D data in real - time and transmit the minutiae points of 3 - dimensional object information to reproduce the object as similar to original.

  • PDF

Study on hole-filling technique of motion capture images using GANs (Generative Adversarial Networks) (GANs(Generative Adversarial Networks)를 활용한 모션캡처 이미지의 hole-filling 기법 연구)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.160-161
    • /
    • 2019
  • As a method for modeling a three-dimensional object, there are a method using a 3D scanner, a method using a motion capture system, and a method using a Kinect system. Through this method, a portion that is not captured due to occlusion occurs in the process of creating a three-dimensional object. In order to implement a perfect three-dimensional object, it is necessary to arbitrarily fill the obscured part. There is a technique to fill the unexposed part by various image processing methods. In this study, we propose a method using GANs, which is the latest trend of unsupervised machine learning, as a method for more natural hole-filling.

  • PDF

Deep Learning based Human Recognition using Integration of GAN and Spatial Domain Techniques

  • Sharath, S;Rangaraju, HG
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.127-136
    • /
    • 2021
  • Real-time human recognition is a challenging task, as the images are captured in an unconstrained environment with different poses, makeups, and styles. This limitation is addressed by generating several facial images with poses, makeup, and styles with a single reference image of a person using Generative Adversarial Networks (GAN). In this paper, we propose deep learning-based human recognition using integration of GAN and Spatial Domain Techniques. A novel concept of human recognition based on face depiction approach by generating several dissimilar face images from single reference face image using Domain Transfer Generative Adversarial Networks (DT-GAN) combined with feature extraction techniques such as Local Binary Pattern (LBP) and Histogram is deliberated. The Euclidean Distance (ED) is used in the matching section for comparison of features to test the performance of the method. A database of millions of people with a single reference face image per person, instead of multiple reference face images, is created and saved on the centralized server, which helps to reduce memory load on the centralized server. It is noticed that the recognition accuracy is 100% for smaller size datasets and a little less accuracy for larger size datasets and also, results are compared with present methods to show the superiority of proposed method.

Few-Shot Content-Level Font Generation

  • Majeed, Saima;Hassan, Ammar Ul;Choi, Jaeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1166-1186
    • /
    • 2022
  • Artistic font design has become an integral part of visual media. However, without prior knowledge of the font domain, it is difficult to create distinct font styles. When the number of characters is limited, this task becomes easier (e.g., only Latin characters). However, designing CJK (Chinese, Japanese, and Korean) characters presents a challenge due to the large number of character sets and complexity of the glyph components in these languages. Numerous studies have been conducted on automating the font design process using generative adversarial networks (GANs). Existing methods rely heavily on reference fonts and perform font style conversions between different fonts. Additionally, rather than capturing style information for a target font via multiple style images, most methods do so via a single font image. In this paper, we propose a network architecture for generating multilingual font sets that makes use of geometric structures as content. Additionally, to acquire sufficient style information, we employ multiple style images belonging to a single font style simultaneously to extract global font style-specific information. By utilizing the geometric structural information of content and a few stylized images, our model can generate an entire font set while maintaining the style. Extensive experiments were conducted to demonstrate the proposed model's superiority over several baseline methods. Additionally, we conducted ablation studies to validate our proposed network architecture.

Super Resolution Performance Analysis of GAN according to Feature Extractor (특징 추출기에 따른 SRGAN의 초해상 성능 분석)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Jung, Se-Hoon;Sim, Chun-Bo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.501-503
    • /
    • 2022
  • 초해상이란 해상도가 낮은 영상을 해상도가 높은 영상으로 합성하는 기술이다. 딥러닝은 영상의 해상도를 높이는 초해상 기술에도 응용되며 실현은 2아4년에 발표된 SRCNN(Super Resolution Convolutional Neural Network) 모델로부터 시작됐다. 이후 오토인코더 (Autoencoders) 구조로는 SRCAE(Super Resolution Convolutional Autoencoders), 합성된 영상을 실제 영상과 통계적으로 구분되지 않도록 강제하는 GAN (Generative Adversarial Networks) 구조로는 SRGAN(Super Resolution Generative Adversarial Networks) 모델이 발표됐다. 모두 SRCNN의 성능을 웃도는 모델들이나 그중 가장 높은 성능을 끌어내는 SRGAN 조차 아직 완벽한 성능을 내진 못한다. 본 논문에서는 SRGAN의 성능을 개선하기 위해 사전 훈련된 특징 추출기(Pre-trained Feature Extractor) VGG(Visual Geometry Group)-19 모델을 변경하고, 기존 모델과 성능을 비교한다. 실험 결과, VGG-19 모델보다 윤곽이 뚜렷하고, 실제 영상과 더 가까운 영상을 합성할 수 있는 모델을 발견할 수 있을 것으로 기대된다.

Generative Artificial Intelligence for Structural Design of Tall Buildings

  • Wenjie Liao;Xinzheng Lu;Yifan Fei
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.203-208
    • /
    • 2023
  • The implementation of artificial intelligence (AI) design for tall building structures is an essential solution for addressing critical challenges in the current structural design industry. Generative AI technology is a crucial technical aid because it can acquire knowledge of design principles from multiple sources, such as architectural and structural design data, empirical knowledge, and mechanical principles. This paper presents a set of AI design techniques for building structures based on two types of generative AI: generative adversarial networks and graph neural networks. Specifically, these techniques effectively master the design of vertical and horizontal component layouts as well as the cross-sectional size of components in reinforced concrete shear walls and frame structures of tall buildings. Consequently, these approaches enable the development of high-quality and high-efficiency AI designs for building structures.

Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates

  • Ha Kyung Jung;Kiduk Kim;Ji Eun Park;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.11
    • /
    • pp.959-981
    • /
    • 2024
  • Generative artificial intelligence (AI) has been applied to images for image quality enhancement, domain transfer, and augmentation of training data for AI modeling in various medical fields. Image-generative AI can produce large amounts of unannotated imaging data, which facilitates multiple downstream deep-learning tasks. However, their evaluation methods and clinical utility have not been thoroughly reviewed. This article summarizes commonly used generative adversarial networks and diffusion models. In addition, it summarizes their utility in clinical tasks in the field of radiology, such as direct image utilization, lesion detection, segmentation, and diagnosis. This article aims to guide readers regarding radiology practice and research using image-generative AI by 1) reviewing basic theories of image-generative AI, 2) discussing the methods used to evaluate the generated images, 3) outlining the clinical and research utility of generated images, and 4) discussing the issue of hallucinations.