• Title/Summary/Keyword: Adversarial Networks

Search Result 214, Processing Time 0.029 seconds

Solar farside magnetograms from deep learning analysis of STEREO/EUVI data

  • Kim, Taeyoung;Park, Eunsu;Lee, Harim;Moon, Yong-Jae;Bae, Sung-Ho;Lim, Daye;Jang, Soojeong;Kim, Lokwon;Cho, Il-Hyun;Choi, Myungjin;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.3-51.3
    • /
    • 2019
  • Solar magnetograms are important for studying solar activity and predicting space weather disturbances1. Farside magnetograms can be constructed from local helioseismology without any farside data2-4, but their quality is lower than that of typical frontside magnetograms. Here we generate farside solar magnetograms from STEREO/Extreme UltraViolet Imager (EUVI) $304-{\AA}$ images using a deep learning model based on conditional generative adversarial networks (cGANs). We train the model using pairs of Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) $304-{\AA}$ images and SDO/Helioseismic and Magnetic Imager (HMI) magnetograms taken from 2011 to 2017 except for September and October each year. We evaluate the model by comparing pairs of SDO/HMI magnetograms and cGAN-generated magnetograms in September and October. Our method successfully generates frontside solar magnetograms from SDO/AIA $304-{\AA}$ images and these are similar to those of the SDO/HMI, with Hale-patterned active regions being well replicated. Thus we can monitor the temporal evolution of magnetic fields from the farside to the frontside of the Sun using SDO/HMI and farside magnetograms generated by our model when farside extreme-ultraviolet data are available. This study presents an application of image-to-image translation based on cGANs to scientific data.

  • PDF

Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN (Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법)

  • Min, Dongwook;Lim, Hyunseok;Gwak, Jeonghwan
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.134-143
    • /
    • 2020
  • Vehicle License Plate Recognition is one of the approaches for transportation and traffic safety networks, such as traffic control, speed limit enforcement and runaway vehicle tracking. Although it has been studied for decades, it is attracting more and more attention due to the recent development of deep learning and improved performance. Also, it is largely divided into license plate detection and recognition. In this study, experiments were conducted to improve license plate detection performance by utilizing various object detection methods and WPOD-Net(Warped Planar Object Detection Network) model. The accuracy was improved by selecting the method of detecting the vehicle(s) and then detecting the license plate(s) instead of the conventional method of detecting the license plate using the object detection model. In particular, the final performance was improved through the process of removing noise existing in the image by using the Fast-SRGAN model, one of the Super-Resolution methods. As a result, this experiment showed the performance has improved an average of 4.34% from 92.38% to 96.72% compared to previous studies.

A Study on GAN Algorithm for Restoration of Cultural Property (pagoda)

  • Yoon, Jin-Hyun;Lee, Byong-Kwon;Kim, Byung-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • Today, the restoration of cultural properties is done by applying the latest IT technology from relying on existing data and experts. However, there are cases where new data are released and the original restoration is incorrect. Also, sometimes it takes too long to restore. And there is a possibility that the results will be different than expected. Therefore, we aim to quickly restore cultural properties using DeepLearning. Recently, so the algorithm DcGAN made in GANs algorithm, and image creation, restoring sectors are constantly evolving. We try to find the optimal GAN algorithm for the restoration of cultural properties among various GAN algorithms. Because the GAN algorithm is used in various fields. In the field of restoring cultural properties, it will show that it can be applied in practice by obtaining meaningful results. As a result of experimenting with the DCGAN and Style GAN algorithms among the GAN algorithms, it was confirmed that the DCGAN algorithm generates a top image with a low resolution.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

A GAN-based face rotation technique using 3D face model for game characters (3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법)

  • Kim, Handong;Han, Jongdae;Yang, Heekyung;Min, Kyungha
    • Journal of Korea Game Society
    • /
    • v.21 no.3
    • /
    • pp.13-24
    • /
    • 2021
  • This paper shows the face rotation applicable to game character facial illustration. Existing studies limited data to human face data, required a large amount of data, and the synthesized results were not good. In this paper, the following method was introduced to solve the existing problems of existing studies. First, a 3D model with features of the input image was rotated and then rendered as a 2D image to construct a data set. Second, by designing GAN that can learn features of various poses from the data built through the 3D model, the input image can be synthesized at a desired pose. This paper presents the results of synthesizing the game character face illustration. From the synthesized result, it can be confirmed that the proposed method works well.

Boundary-enhanced SAR Water Segmentation using Adversarial Learning of Deep Neural Networks (적대적 학습 개념을 도입한 경계 강화 SAR 수체탐지 딥러닝 모델)

  • Hwisong Kim;Duk-jin Kim;Junwoo Kim;Seungwoo Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.2-2
    • /
    • 2023
  • 기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.

  • PDF

Trading Algorithm Selection Using Time-Series Generative Adversarial Networks (TimeGAN을 활용한 트레이딩 알고리즘 선택)

  • Lee, Jae Yoon;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • A lot of research is being going until this day in order to obtain stable profit in the stock market. Trading algorithms are widely used, accounting for over 80% of the trading volume of the US stock market. Despite a lot of research, there is no trading algorithm that always shows good performance. In other words, there is no guarantee that an algorithm that performed well in the past will perform well in the future. The reason is that there are many factors that affect the stock price and there are uncertainties about the future. Therefore, in this paper, we propose a model using TimeGAN that predicts future returns well and selects algorithms that are expected to have high returns based on past records of the returns of algorithms. We use TimeGAN becasue it is probabilistic, whereas LSTM method predicts future time series data is deterministic. The advantage of TimeGAN probabilistic prediction is that it can reflect uncertainty about the future. As an experimental result, the method proposed in this paper achieves a high return with little volatility and shows superior results compared to many comparison algorithms.

Generation of He I 1083 nm Images from SDO/AIA 19.3 and 30.4 nm Images by Deep Learning

  • Son, Jihyeon;Cha, Junghun;Moon, Yong-Jae;Lee, Harim;Park, Eunsu;Shin, Gyungin;Jeong, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2021
  • In this study, we generate He I 1083 nm images from Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images using a novel deep learning method (pix2pixHD) based on conditional Generative Adversarial Networks (cGAN). He I 1083 nm images from National Solar Observatory (NSO)/Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used as target data. We make three models: single input SDO/AIA 19.3 nm image for Model I, single input 30.4 nm image for Model II, and double input (19.3 and 30.4 nm) images for Model III. We use data from 2010 October to 2015 July except for June and December for training and the remaining one for test. Major results of our study are as follows. First, the models successfully generate He I 1083 nm images with high correlations. Second, the model with two input images shows better results than those with one input image in terms of metrics such as correlation coefficient (CC) and root mean squared error (RMSE). CC and RMSE between real and AI-generated ones for the model III with 4 by 4 binnings are 0.84 and 11.80, respectively. Third, AI-generated images show well observational features such as active regions, filaments, and coronal holes. This work is meaningful in that our model can produce He I 1083 nm images with higher cadence without data gaps, which would be useful for studying the time evolution of chromosphere and coronal holes.

  • PDF

Development of a Peak Water Level Prediction Technique Using GANs : Application to Jamsu Bridge, Korea (GANs를 이용한 하천의 첨두수위 예측 기법 개발 : 잠수교 적용)

  • Lee, Seung Yeon;Kim, Young In;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.416-416
    • /
    • 2020
  • 우리나라의 계절 특성상 여름철 집중호우가 쏟아지는 현상이 빈번하게 발생하는데 이러한 돌발홍수가 예고 없이 일어나 상습적으로 침수 피해를 입는 지역이 증가하고 있다. 본 연구에서 2009년 ~ 2019년 동안 서울시 침수 피해 사건 중심의 인터넷 기사를 기반으로 실제 침수 사례를 조사해본 결과, 침수가 가장 많이 발생한 순으로 반포동(26건), 대치동(25건), 잠실동(21건)으로 집계되었다. 침수피해가 가장 많은 반포동을 연구지역으로 선정하고 그 중 잠수교의 수위를 예측하는 연구를 진행하였다. 기존 연구에서는 수치모형에 비해 신속한 결과를 도출할 수 있는 자료 기반 모형 중 LSTM 기법을 많이 사용하였다. 그러나 이는 선행 시간이 길어질수록 첨두수위에서 과소추정된 것으로 분석된 취약점이 존재하였다(정성호 외, 2018). 본 연구에서는 이러한 단점을 보완하기 위해 GANs(Generative Adversarial Networks)를 이용하였다. GANs는 생성자와 감별자가 나뉘어 생성자가 실제 자료인 첨두수위에서의 잠수교의 수위를 학습하고 실제와 근접한 가상데이터를 결과로 생성하여 감별자는 그 생성된 미래의 잠수교의 수위가 실제인지 가상인지 판별하도록 학습시키는 신경망 구조이다. 사용한 수문자료는 한강홍수통제소, 기상청, 국립해양조사원에서 제공하는 최근 15년간의 (2005년~2019년) 수위, 방류량, 강수량, 조위 자료를 수집하였고 t-test와 상관성분석을 통해 사용한 인자 간의 유의미성 판단과 상관성을 분석했다. 또한, 민감도 분석 결과 시퀀스길이(5), 반복횟수(1000), 은닉층(10), 학습률(0.005)로 최적값을 선정하였다. 또한 학습구간(2005년~2014년)과 검증구간(2015~2019년)으로 나누어 상대적으로 높은 수위가 관측되는 홍수기의 3, 6, 9시간 후의 수위를 예측하고 오차 지표를 이용해 평가하였다. LSTM 기법으로 예측된 수위와 GANs로 예측된 수위를 비교한 결과 GANs으로 예측된 첨두수위에서의 정확도가 5% 정도로 향상되었다. 향후에는 다양한 영향인자와 다른 기법과의 결합을 고려한다면 보다 정확하게 수위를 예측하여 하천 주변 사회기반시설의 침수 피해를 감소시킬 것으로 판단된다.

  • PDF

A Study on Observation of Lunar Permanently Shadowed Regions Using GAN (GAN을 이용한 달의 영구 그림자 영역 관찰에 관한 연구)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Lee, Han-Sung;Jung, Se-Hoon;Sim, Chun-Bo
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.520-523
    • /
    • 2022
  • 일본 우주항공연구개발기구(Japan Aerospace Exploration Agency, JAXA)는 2007년부터 2017년까지 달 탐사선 셀레네(Selenological and Engineering Explorer, SelEnE)가 관측한 데이터를 수집하고, 연구했다. JAXA는 지구 상층 대기에 존재하는 산소가 자기장의 꼬리 부분에 실려 달로 이동한다는 사실을 발견했다. 하지만 이 연구는 아직 진행 중이며 달의 산화 과정 규명에 추가 연구가 필요하다. 본 논문에서는 생성적 적대 신경망(Generative Adversarial Networks, GAN)으로 달 분화구의 영구 그림자 영역을 제거하고, 물과 얼음을 발견하여 선행 연구의 완성도를 향상하고자 한다. 실험에 사용할 모델은 CIPS(Conditionally Independent Pixel Synthesis)다. CIPS는 실제 같은 영상을 고해상도로 합성한다. 합성할 데이터의 최적인 가중치 초기화 및 파라미터 갱신 방법, 활성 함수 조합은 실험을 통해 확인한다. 필요에 따라 앙상블 학습을 할 수도 있다. 성능평가는 FID(Frechet Inception Distance), 정밀도, 재현율을 사용한다. 제안한 방법은 진행 중인 연구의 시간과 비용을 절약하고, 인과관계를 더욱 명확히 밝히는 데 도움 될 수 있다고 사료된다.