While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.
초해상은 저해상도의 영상을 고해상도 영상으로 합성하는 기술이다. 이 기술에 딥러닝이 적용되어, 2014년에는 SRCNN(Super Resolution Convolutional Neural Network) 모델이 발표됐다. 이후에는 SRCAE(Super Resolution Convolutional Autoencoders)와 GAN(Generative Adversarial Networks)을 기반으로 한 SRGAN(Super Resolution Generative Adversarial Networks) 등, SRCNN의 성능을 능가하는 모델들이 발표됐다. ESRGAN(Enhanced Super Resolution Generative Adversarial Networks)은 SRGAN 모델의 성능을 개선했지만, 완벽한 성능을 내지 못하는 문제점이 있다. 이에 본 논문에서는 판별자(Discriminator) 구조를 변경하여 ESRGAN의 성능을 개선한다. 실험 결과, 제안하는 모델이 ESRGAN보다 더 높은 성능을 보일 것으로 기대된다.
International Journal of Computer Science & Network Security
/
v.24
no.2
/
pp.136-142
/
2024
Haze is a very common phenomenon that degrades or reduces the visibility. It causes various problems where high quality images are required such as traffic and security monitoring. So haze removal from images receives great attention for clear vision. Due to its huge impact, significant advances have been achieved but the task yet remains a challenging one. Recently, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired "in the wild" and how we could gauge the progress in the field. This paper aims to bridge this gap. We present a comprehensive study and experimental evaluation on diverse GAN models in single image dehazing through benchmark datasets.
International Journal of Internet, Broadcasting and Communication
/
v.11
no.4
/
pp.31-36
/
2019
Unsupervised neural networks have not caught enough attention until Generative Adversarial Network (GAN) was proposed. By using both the generator and discriminator networks, GAN can extract the main characteristic of the original dataset and produce new data with similarlatent statistics. However, researchers understand fully that training GAN is not easy because of its unstable condition. The discriminator usually performs too good when helping the generator to learn statistics of the training datasets. Thus, the generated data is not compelling. Various research have focused on how to improve the stability and classification accuracy of GAN. However, few studies delve into how to improve the training efficiency and to save training time. In this paper, we propose a novel optimizer, named FAST-ADAM, which integrates the Lookahead to ADAM optimizer to train the generator of a semi-supervised generative adversarial network (SSGAN). We experiment to assess the feasibility and performance of our optimizer using Canadian Institute For Advanced Research - 10 (CIFAR-10) benchmark dataset. From the experiment results, we show that FAST-ADAM can help the generator to reach convergence faster than the original ADAM while maintaining comparable training accuracy results.
International journal of advanced smart convergence
/
v.10
no.3
/
pp.163-171
/
2021
Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.4105-4121
/
2021
Recently, malware classification based on Deep Neural Networks (DNN) has gained significant attention due to the rise in popularity of artificial intelligence (AI). DNN-based malware classifiers are a novel solution to combat never-before-seen malware families because this approach is able to classify malwares based on structural characteristics rather than requiring particular signatures like traditional malware classifiers. However, these DNN-based classifiers have been found to lack robustness against malwares that are carefully crafted to evade detection. These specially crafted pieces of malware are referred to as adversarial examples. We consider a clever adversary who has a thorough knowledge of DNN-based malware classifiers and will exploit it to generate a crafty malware to fool DNN-based classifiers. In this paper, we propose a DNN-based malware classifier that becomes resilient to these kinds of attacks by exploiting Generative Adversarial Network (GAN) based data augmentation. The experimental results show that the proposed scheme classifies malware, including AEs, with a false positive rate (FPR) of 3.0% and a balanced accuracy of 70.16%. These are respective 26.1% and 18.5% enhancements when compared to a traditional DNN-based classifier that does not exploit GAN.
Communications for Statistical Applications and Methods
/
v.30
no.6
/
pp.589-603
/
2023
Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.867-871
/
2022
Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.11
/
pp.5594-5615
/
2019
Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.3
/
pp.449-458
/
2023
Artificial Intelligence is providing convenience in various fields using big data and deep learning technologies. However, deep learning technology is highly vulnerable to adversarial examples, which can cause misclassification of classification models. This study proposes a method to detect and purification various adversarial attacks using StarGAN. The proposed method trains a StarGAN model with added Categorical Entropy loss using adversarial examples generated by various attack methods to enable the Discriminator to detect adversarial examples and the Generator to purification them. Experimental results using the CIFAR-10 dataset showed an average detection performance of approximately 68.77%, an average purification performance of approximately 72.20%, and an average defense performance of approximately 93.11% derived from restoration and detection performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.