• Title/Summary/Keyword: Advanced imaging techniques

Search Result 111, Processing Time 0.029 seconds

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

Three-dimensional Refractive-index Distributions of Individual Angiosperm Pollen Grains

  • Park, Chansuk;Lee, SangYun;Kim, Geon;Lee, SeungJun;Lee, Jaehoon;Heo, Taehyun;Park, Yoonjeong;Park, YongKeun
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.460-467
    • /
    • 2018
  • Three-dimensional (3D) refractive-index (RI) imaging and quantitative analyses of angiosperm pollen grains are presented. Using optical diffraction tomography, the 3D RI structures of individual angiosperm pollen grains were measured without using labeling or other preparation techniques. Various physical quantities including volume, surface area, exine volume, and sphericity were determined from the measured RI tomograms of pollen grains. Exine skeletons, the distinct internal structures of angiosperm pollen grains, were identified and systematically analyzed.

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

MR Lymphangiography (자기공명영상 림프관조영술)

  • Sang Hoon Lee;Joon Pio Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.70-80
    • /
    • 2020
  • Currently, there has been an increase in the use of surgical modalities to treat lymphedema and MR imaging to examine lymphatic vessels. Furthermore, there have been several advancements in the field of MR imaging, from the traditional heavily T2-weighted images to three-dimensional images. Three-dimensional images include spoiled gradient echo images, and numerous advanced techniques have been implemented. Among the fat suppression techniques, mDixon technique has recently been in the spotlight.

Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury

  • Yuan Meng Yu;Qian Qian Ni;Zhen Jane Wang;Meng Lin Chen;Long Jiang Zhang
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.894-908
    • /
    • 2019
  • Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Spiral Drawing-based Real-time Crystallization Mosaic Tchnique (나선 드로잉 기반 실시간 결정화 모자이크 기법)

  • Kim, Jae Kyoung;Kim, Young Ho;Park, Jin Wan
    • Journal of the Korean Society for Computer Game
    • /
    • v.31 no.4
    • /
    • pp.137-144
    • /
    • 2018
  • In the past, mosaics were made by laying cloth on the floor and manually tiling the tiles. However, due to recent developments in technology, the data storage method has evolved from analog to digital, so that image representation and conversion can be realized through computer. Also, various expression techniques of mosaic are developed, and it is also used as a method of art representation in digital. There are various studies on the production process of mosaic. The proposed method is a crystallization mosaic that spreads spirally in real time and uses 3D quartz as a tile element. Although existing researches are mostly focused on the purpose of rendering images in more detail, this technique combines untried spiral drawing and crystallization, and attempts to explore new expression techniques in 3D space by attempting a new mosaic method in 3D space. 'Spiral Crystallization Photo', based on this technique, was selected as Top27 in MWU Award 18 and exhibited at Unite Seoul 2018.

Diffusion-Weighted MRI for the Assessment of Molecular Prognostic Biomarkers in Breast Cancer

  • Mami Iima;Masako Kataoka;Maya Honda;Denis Le Bihan
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.623-633
    • /
    • 2024
  • This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for standardized DWI protocols to improve their clinical utility in breast cancer management.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Study on Grain Boundaries in Single-layer Graphene Using Ultrahigh Resolution TEM

  • Lee, Zong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.107-107
    • /
    • 2012
  • Recently, large-area synthesis of high-quality but polycrystalline graphene has been advanced as a scalable route to applications including electronic devices. The presence of grain boundaries (GBs) may be detrimental on some electronic, thermal, and mechanical properties of graphene, including reduced electronic mobility, lower thermal conductivity, and reduced ultimate mechanical strength, yet on the other hand, GBs might be beneficially exploited via controlled GB engineering. The study of graphene grains and their boundary is therefore critical for a complete understanding of this interesting material and for enabling diverse applications. I present that scanning electron diffraction in STEM mode makes possible fast and direct identification of GBs. We also demonstrate that dark field TEM imaging techniques allow facile GB imaging for high-angle tilt GBs in graphene. GB mapping is systematically carried out on large-area graphene samples via these complementary techniques. The study of the detailed atomic structure at a GB in suspended graphene uses aberration-corrected atomic resolution TEM at a low kV.

  • PDF