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INTRODUCTION

Diffusion-weighted imaging (DWI), with more than 
35 years of development, provides microstructural and 
functional information that complements the excellent 
anatomical details provided by MRI. Although dynamic 
contrast-enhanced breast MRI can detect malignancies with 
high sensitivity, its specificity is variable. It also requires 
the administration of a gadolinium contrast agent, which 
can cause nephrogenic systemic fibrosis in patients with 
renal dysfunction, possible tissue deposition with unknown 
long-term side effects, and contraindications in specific 

Diffusion-Weighted MRI for the Assessment of Molecular 
Prognostic Biomarkers in Breast Cancer
Mami Iima1,2, Masako Kataoka2, Maya Honda2,3, Denis Le Bihan4

1Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, 
Nagoya, Japan 
2Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan  
3Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan 
4NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat à l’Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France

This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic 
biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status 
and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen 
receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results 
indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, 
and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the 
potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional 
insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for 
standardized DWI protocols to improve their clinical utility in breast cancer management.
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populations like pregnant women [1].
DWI enables the detection of lesions based on tissue 

microstructural features revealed by the diffusion of water 
molecules. The apparent diffusion coefficient (ADC), which 
eliminates the confounding T1 and T2 effects visible on 
DW images and provides a quantitative estimation of the 
water diffusion process in tissues, has been useful for 
differentiating between benign and malignant breast lesions 
[2]. Generally, DWI provides outstanding image contrast that 
reflects the architecture of cancer-specific tissue. Recent 
advances in MRI gradient hardware have enabled the study 
of diffusion time-dependent ADCs [3]. Within structured 
environments, such as cancers, interactions with barriers 
occur more frequently, thereby reducing the ADC. This 
makes time-dependent DWI particularly effective for cancer 
characterization.

Recently, the use of DWI as a complementary and 
potential alternative imaging technique for evaluating 
breast lesions has increased. In particular, DWI can provide 
information in vivo at a microscopic scale, even though 
DWI data are acquired at the millimeter scale in the form of 
an ADC that reflects the specific tissue features of cancer 
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As numerous studies have highlighted, ADC is also 
pivotal in distinguishing hormone receptor statuses and 
prognostic biomarkers in breast cancer [11], particularly the 
estrogen receptor (ER), progesterone receptor (PgR), human 
epidermal growth factor receptor 2 (HER2), and the marker 
of proliferation Ki-67. In this context, we present a focused 
and comprehensive summary of evidence regarding the 
relationship between ADC and the status of crucial ER, PgR, 
HER-2, and Ki-67 biomarkers in breast cancer. Additionally, 
we discuss the use of DWI to determine hormone receptor 
status in breast cancer.

Relationship between ADC and Hormone 
Receptor Status of Breast Cancer

For a comprehensive, quantitative summary of the relevant 
data in the literature, we conducted a systematic review 
and meta-analysis following the guidelines of the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 

[4,5]. Breast DWI has many advantages that complement 
conventional breast MRI, thereby improving breast cancer 
diagnostic accuracy (particularly specificity) and reducing 
unnecessary biopsy rates in suspected cases of breast cancer. 

Many radiologists include ADC in breast MRI diagnostic 
reports [6], although this parameter has not yet been 
included in the Breast Imaging Reporting and Data System 
(BI-RADS). There is a growing interest in making DWI a 
routine sequence in BI-RADS. However, the use of an ADC 
with specific cutoff values requires hospitals and institutions 
to standardize breast DWI or at least meet a minimum level 
of quality assurance. For these reasons, consensus and 
recommendations have been published by the International 
Breast DWI Working Group of the European Society of Breast 
Imaging [7] and Korean radiologists [8]. Some multicenter 
studies have revealed that the ADC has the potential 
to spare patients from unnecessary biopsies for breast 
cancer diagnosis [9,10], thus reducing patient anxiety and 
healthcare costs.
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Records identified 
through database 
screening (n = 82)

Additional records 
identified through 

other sources (n = 18)

Records excluded for the 
following reasons (n = 17)

         • Non-English language (n = 1)
         • Review article (n = 5)
         • No MRI study (n = 6)
         • No DWI study (n = 5)

Full-text articles excluded 
for the following reasons (n = 31)

         • No diagnostic ADC analysis (n = 4)
         • No hormone receptors status (n = 3)
         • No reported mean and SD (n = 22)
         • Only for treatment (n = 1)
         • Retracted (n = 1)

Full-text articles assessed for 
eligibility (n = 83)

Studies included in quantitative 
synthesis (meta-analysis) (n = 52)

Fig. 1. Flowchart of the screening process for the meta-analysis. MRI = magnetic resonance imaging, DWI = diffusion-weighted imaging, 
ADC = apparent diffusion coefficient, SD = standard deviation
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(PRISMA) statement. The following words were searched 
using the PubMed, Web of Science, and Google Scholar 
databases: “breast neoplasm or breast cancer or breast 
tumor” and “diffusion weighted MRI or diffusion-weighted 
imaging or diffusion weighted imaging or ADC or apparent 
diffusion coefficient” and “estrogen receptor or progesterone 
receptor” or “ER” or “PgR” or “human epidermal growth 
factor receptor 2” or “HER2 or HER-2.” We limited our 
search to English-language publications and data published 
between January 2008 and July 2023. The references cited 
by the relevant articles were manually scanned to search for 
other pertinent studies.

Two investigators selected eligible studies, and relevant 
data were independently extracted from the retrieved papers. 
The results from each study were examined cooperatively and 
a consensus was reached on all items through discussion and 
reexamination. All the authors approved the final decision 
regarding the studies to be admitted. The standardized mean 
difference in ADC with a 95% confidence interval was used 
as a summary statistic for ER, PgR, and HER2 categories. 
A total of 52 articles [3,12-62] were finally reviewed and 
quantitatively summarized (Fig. 1). 

ADCs for Differentiation of ER Status 
A forest plot of the mean differences in ADCs between 

ER-positive and -negative breast cancers from 44 studies 
[3,13,14,16-22,24,26-38,41-54,56-61] is given in Figure 2A. 
There was large heterogeneity among the studies (I2 = 80%), 
but overall, ER-positive cancers exhibited significantly lower 
ADCs than ER-negative cancers (P < 0.01).

ADCs for Differentiation of PgR Status 
A forest plot of the mean difference in ADCs between 

PgR-positive and -negative breast cancers from 41 studies 
[3,13,14,16-22,24,26-37,41-43,45-51,53,54,56-61] is 
provided in Figure 2B. It also showed large heterogeneity 
across the studies (I2 = 80%), but overall, PgR-positive 
cancers had significantly lower ADCs than PgR-negative 
cancers (P < 0.01).

ADCs for Differentiation of HER2 Status 
A forest plot of the mean difference in ADCs between 

HER2-negative and positive cancers from 40 studies [3,15-
18,20,21,24-29,31-34,36-38,41-54,56-61] is given in 
Figure 3A. Again, this showed a large heterogeneity across 
the studies (I2 = 92%). Overall, these results showed that 
HER2-negative cancers had significantly lower ADCs than 

HER2-positive cancers (P < 0.01).

ADCs for Differentiation of Ki-67 Status 
A forest plot of the mean difference in ADCs between Ki-

67-positive and -negative cancers from 41 studies [3,12-
18,20,21,23,24,26-28,31-40,42,43,45-48,51-55,57,59-62] 
is given in Figure 3B and shows that Ki-67-positive cancers 
have significantly lower ADCs than cancers with a negative 
Ki-67 status (P < 0.01), although a large heterogeneity was 
observed (I2 = 94%). 

Clinical examples of different ER, PgR, HER2, and Ki-67 
statuses are shown in Figure 4. 

ADCs for Differentiation of Breast Cancer Subtypes 
The use of ADCs for the differentiation of breast cancer 

subtypes has yielded mixed findings, and a meta-analysis 
has shown that ADC cannot differentiate between breast 
cancer subtypes [63]. Further investigation is required to 
verify these results. 

ADCs for Cancer Diagnosis, Predicting Treatment 
Response, and Prognosis

These results show that ER-positivity, PgR-positivity, 
and HER2-negativity are all related to lower ADC values, 
although there was a high degree of heterogeneity across 
the studies. Regarding the relationship between ADC and 
Ki-67 status, the overall results are consistent with recent 
clinical and preclinical studies showing that changes in ADC 
at different diffusion times may provide information on Ki-67 
status [3,64] and suggesting that Ki-67 is a useful marker of 
tissue proliferation at a microscopic scale. In contrast, other 
studies have reported mixed results regarding the ability 
of ADCs to differentiate between high and low expression 
levels of the nuclear protein Ki-67 in breast cancer [2], 
and a recent multicenter study revealed a relatively low 
diagnostic performance (AUC: 0.6) of ADCs in such cases 
[11]. One reason for the variability in these findings might 
be the differing thresholds for considering Ki-67 as positive 
in breast cancer, which range from 10% to 50% [11]. Further 
research is needed to improve the accuracy and reliability of 
ADC-based differentiation of the Ki-67 status. In addition, 
although our meta-analysis elucidated the correlations 
between ADC values and the status of hormone receptors, 
including ER, PgR, HER2, and Ki-67 in breast cancer, the 
precise effect size of these correlations remains to be 
definitively established, warranting further research for 
more conclusive insights. Corrections based on the lesion 
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Fig. 2. ADC differences in breast tumors by hormone receptor status. A: A forest plot of mean ADC (10-3 mm2/s) difference reported for 
ER-positive and ER-negative breast tumors. Tumors with positive ER status have significantly lower ADCs compared with receptor-negative 
tumors. B: Forest plot of mean ADC (10-3 mm2/s) difference reported for PgR-positive and PgR-negative breast tumors. Tumors with positive 
PgR status exhibit significantly lower ADCs compared with PgR-negative tumors. ADC = apparent diffusion coefficient, ER = estrogen receptor, 
PgR = progesterone receptor, SD = standard deviation, IV  = weighted mean difference, CI = confidence interval, Chi2 = chi-squared test statistic, 
df = degrees of freedom, I2 = heterogeneity statistic, Z = Z-test statistic

A
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Fig. 3. ADC differences in breast tumors by HER2 status and Ki-67 status. A: Forest plot of mean ADC (10-3 mm2/s) difference reported for 
breast tumors with negative and positive HER2 status. Tumors exhibiting negative HER2 status show significantly lower ADCs than those 
with positive HER2 status. B: Forest plot of mean ADC (10-3 mm2/s) difference reported for markers of proliferation Ki-67-positive and Ki-
67-negative breast tumors. Tumors positive for Ki-67 show significantly lower ADCs compared to those with negative Ki-67 status. ADC = 
apparent diffusion coefficient, HER2 = human epidermal growth factor 2 receptor, SD = standard deviation, IV  = weighted mean difference, 
CI = confidence interval, Chi2 = chi-squared test statistic, df = degrees of freedom, I2 = heterogeneity statistic, Z = Z-test statistic 
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Fig. 4. Clinical examples of breast cancers (invasive ductal carcinomas). Contrast-enhanced images, diffusion-weighted images at a b value of 
1000 sec/mm2, and ADC maps are shown. The ADC values and each ER, PgR, HER2, and Ki-67 status of breast cancers are also demonstrated. 
ADC = apparent diffusion coefficient, ER = estrogen receptor, PgR = progesterone receptor, HER-2 = human epidermal growth factor receptor 2

size may be necessary to understand these relationships 
more accurately.

Specific ADC thresholds could help identify patients 
at higher risk, leading to a more personalized treatment 
for breast cancer. These findings pave the way for future 
studies to better use ADCs to determine the hormone 
receptor status. However, the interpretation of these 
results may have been influenced by the chosen diffusion 
time, histological threshold, and inconsistent acquisition 
parameters. The high inconsistency among studies, possibly 
exacerbated by small sample sizes, highlights the critical need 
for standardization in research methodologies. In addition, 
small mean differences in ADC values associated with hormone 
receptor status were observed in this study, which might 
have been influenced by the heterogeneity of the acquisition 
protocol. The standardization of ADC values, including 
reproducibility, is critical for verifying these changes.

Some multicenter studies have revealed that the ADC has 
the potential to spare patients from unnecessary biopsies 
for breast cancer diagnosis [9,10], thus reducing patient 
anxiety and healthcare costs. In addition to diagnosis, 
the ADC has been investigated as a potential predictor 
of treatment response in patients with breast cancer. The 
American College of Radiology Imaging Network conducted 

a multicenter study to assess the usefulness of ADCs in 
predicting the response to neoadjuvant chemotherapy 
in patients with breast cancer [65]. This study revealed 
that changes in ADCs during treatment could predict 
a pathological response to neoadjuvant chemotherapy 
and that mid-treatment changes in ADCs were predictive 
of hormone receptor-positive/HER2-negative cancers. 
Predicting treatment responses using the ADC may help 
guide treatment decisions and avoid ineffective therapies.

Beyond ADC: IVIM and Non-Gaussian DWI

Intravoxel incoherent motion (IVIM) and non-Gaussian 
DWI can provide additional information on tissue 
microstructure and microvasculature compared with standard 
ADC measurements. IVIM can be used to evaluate perfusion 
in capillaries, primarily at low b values (< 200 s/mm2). Large 
b values (> 1000 s/mm2) predominantly indicated hindered 
or restricted diffusion, and the non-normality of DWI 
could be quantified using the kurtosis model (Fig. 5). The 
ability to accurately characterize tissue microstructure and 
microvasculature can enhance the diagnostic accuracy of 
breast MRI, and IVIM has shown promise in differentiating 
between malignant and benign breast lesions [66,67]. 

       ADC       ER        PgR        HER2        Ki-67
(x 10-3/mm2/s)

      0.80          -           -           -             +

      0.72          +           +           -             +

      1.16          +           -           -             -

      0.75          -           -           +             +
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Mean kurtosis values have also been found to be useful 
for differentiating invasive ductal carcinoma from ductal 
carcinoma in situ [66]. The difference between the 
maximum and minimum ADCs, together with the kurtosis 
value calculated from a non-Gaussian diffusion model, may 
also help predict metastatic breast cancer [68,69]. While 
IVIM and non-Gaussian DWI often require the acquisition 
of large sets of diffusion-weighted images and dedicated 
data processing, recent approaches have shown that IVIM 
and non-Gaussian diffusion information can be collected 
using ad hoc parameters, such as the shifted ADC [4] 
and signature index [4,70]. The latter, in particular, has 
been shown to provide information on cancer subtypes 
and hormone status [71]. However, it is clear that these 
advanced DWI techniques require standardization in terms of 
both acquisition and analysis.

CONCLUSION

Breast DWI is a rapidly growing and valuable 
methodology for detecting and characterizing breast cancer 
and predicting treatment responses. It is also safe for most 
women. Although ADCs have been reported to significantly 

correlate with some molecular prognostic biomarkers 
and some trends might be evident, as demonstrated in 
the meta-analysis, there remains a lack of consensus 
among studies. Additionally, the accuracy of breast cancer 
diagnosis using DWI may be influenced by the selected 
diffusion times and histological thresholds, underscoring 
the need for standardized DWI protocols for breast cancer 
diagnosis. Accumulating evidence suggests that several 
alternative measures, including IVIM and non-Gaussian DWI, 
can serve as useful imaging biomarkers in clinical settings. 
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56.	Tezcan Ş, Uslu N, Öztürk FU, Akçay EY, Tezcaner T. Diffusion-
weighted imaging of breast cancer: correlation of the apparent 
diffusion coefficient value with pathologic prognostic factors. 

Eur J Breast Health 2019;15:262-267 
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