• Title/Summary/Keyword: Advanced imaging

Search Result 845, Processing Time 0.023 seconds

Gait Recognition Using Multiple Feature detection (다중 특징점 검출을 이용한 보행인식)

  • Cho, Woon;Kim, Dong-Hyeon;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.84-92
    • /
    • 2007
  • The gait recognition is presented for human identification from a sequence of noisy silhouettes segmented from video by capturing at a distance. The proposed gait recognition algorithm gives better performance than the baseline algorithm because of segmentation of the object by using multiple modules; i) motion detection, ii) object region detection, iii) head detection, and iv) active shape models, which solve the baseline algorithm#s problems to make background, to remove shadow, and to be better recognition rates. For the experiment, we used the HumanID Gait Challenge data set, which is the largest gait benchmarking data set with 122 objects, For realistic simulation we use various values for the following parameters; i) viewpoint, ii) shoe, iii) surface, iv) carrying condition, and v) time.

Robust Stereo Matching under Radiometric Change based on Weighted Local Descriptor (광량 변화에 강건한 가중치 국부 기술자 기반의 스테레오 정합)

  • Koo, Jamin;Kim, Yong-Ho;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.164-174
    • /
    • 2015
  • In a real scenario, radiometric change has frequently occurred in the stereo image acquisition process using multiple cameras with geometric characteristics or moving a single camera because it has different camera parameters and illumination change. Conventional stereo matching algorithms have a difficulty in finding correct corresponding points because it is assumed that corresponding pixels have similar color values. In this paper, we present a new method based on the local descriptor reflecting intensity, gradient and texture information. Furthermore, an adaptive weight for local descriptor based on the entropy is applied to estimate correct corresponding points under radiometric variation. The proposed method is tested on Middlebury datasets with radiometric changes, and compared with state-of-the-art algorithms. Experimental result shows that the proposed scheme outperforms other comparison algorithms around 5% less matching error on average.

Spiral Drawing-based Real-time Crystallization Mosaic Tchnique (나선 드로잉 기반 실시간 결정화 모자이크 기법)

  • Kim, Jae Kyoung;Kim, Young Ho;Park, Jin Wan
    • Journal of the Korean Society for Computer Game
    • /
    • v.31 no.4
    • /
    • pp.137-144
    • /
    • 2018
  • In the past, mosaics were made by laying cloth on the floor and manually tiling the tiles. However, due to recent developments in technology, the data storage method has evolved from analog to digital, so that image representation and conversion can be realized through computer. Also, various expression techniques of mosaic are developed, and it is also used as a method of art representation in digital. There are various studies on the production process of mosaic. The proposed method is a crystallization mosaic that spreads spirally in real time and uses 3D quartz as a tile element. Although existing researches are mostly focused on the purpose of rendering images in more detail, this technique combines untried spiral drawing and crystallization, and attempts to explore new expression techniques in 3D space by attempting a new mosaic method in 3D space. 'Spiral Crystallization Photo', based on this technique, was selected as Top27 in MWU Award 18 and exhibited at Unite Seoul 2018.

Brain Mapping: From Anatomics to Informatics

  • Sun, Woong
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.184-187
    • /
    • 2016
  • Neuronal connectivity determines brain function. Therefore, understanding the full map of brain connectivity with functional annotations is one of the most desirable but challenging tasks in science. Current methods to achieve this goal are limited by the resolution of imaging tools and the field of view. Macroscale imaging tools (e.g., magnetic resonance imaging, diffusion tensor images, and positron emission tomography) are suitable for large-volume analysis, and the resolution of these methodologies is being improved by developing hardware and software systems. Microscale tools (e.g., serial electron microscopy and array tomography), on the other hand, are evolving to efficiently stack small volumes to expand the dimension of analysis. The advent of mesoscale tools (e.g., tissue clearing and single plane ilumination microscopy super-resolution imaging) has greatly contributed to filling in the gaps between macroscale and microscale data. To achieve anatomical maps with gene expression and neural connection tags as multimodal information hubs, much work on information analysis and processing is yet required. Once images are obtained, digitized, and cumulated, these large amounts of information should be analyzed with information processing tools. With this in mind, post-imaging processing with the aid of many advanced information processing tools (e.g., artificial intelligence-based image processing) is set to explode in the near future, and with that, anatomic problems will be transformed into informatics problems.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Comparison of mastoid air cell volume in patients with or without a pneumatized articular tubercle

  • Adisen, Mehmet Zahit;Aydogdu, Merve
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Purpose: The aim of this study was to compare mastoid air cell volumes in patients with or without a pneumatized articular tubercle (PAT) on cone-beam computed tomography (CBCT) images. Materials and Methods: The CBCT images of 224 patients were retrospectively analyzed for the presence of PAT. The Digital Imaging and Communications in Medicine data of 30 patients with PAT and 30 individuals without PAT were transferred to 3D Doctor Software. Mastoid air cell volumes were measured using semi-automatic segmentation on axial sections. Data were analyzed using SPSS version 20.0. Results: The patients with PAT and those without PAT had a mean mastoid volume of 6.31±2.86 cm3 and 3.25±1.99 cm3, respectively. There were statistically significant differences in mastoid air cell volumes between patients with and without PAT regardless of sex and mastoid air cell side (P<0.05). Conclusion: The detection of PAT on routine dental radiographic examinations might be a potential prognostic factor that could be used to detect extensive pneumatization in the temporal bone. Clinicians should be aware that there may be widespread pneumatization of mastoid air cells in patients in whom PAT is detected. Advanced imaging should be performed in these cases, and possible complications due to surgical interventions should be considered.

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

An Updated Review of Magnetic Resonance Neurography for Plexus Imaging

  • Joon-Yong Jung;Yenpo Lin;John A Carrino
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1114-1130
    • /
    • 2023
  • Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.