DOI QR코드

DOI QR Code

An Updated Review of Magnetic Resonance Neurography for Plexus Imaging

  • Joon-Yong Jung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Yenpo Lin (Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine) ;
  • John A Carrino (Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine)
  • Received : 2023.02.15
  • Accepted : 2023.08.06
  • Published : 2023.11.01

Abstract

Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.

Keywords

References

  1. Filler AG, Howe FA, Hayes CE, Kliot M, Winn HR, Bell BA, et al. Magnetic resonance neurography. Lancet 1993;341:659-661 https://doi.org/10.1016/0140-6736(93)90422-D
  2. Howe FA, Filler AG, Bell BA, Griffiths JR. Magnetic resonance neurography. Magn Reson Med 1992;28:328-338 https://doi.org/10.1002/mrm.1910280215
  3. Ferrante MA, Wilbourn AJ. Electrodiagnostic approach to the patient with suspected brachial plexopathy. Neurol Clin 2002;20:423-450 https://doi.org/10.1016/S0733-8619(01)00007-X
  4. Laughlin RS, Dyck PJ. Electrodiagnostic testing in lumbosacral plexopathies. Phys Med Rehabil Clin N Am 2013;24:93-105 https://doi.org/10.1016/j.pmr.2012.08.014
  5. Chhabra A, Belzberg AJ, Rosson GD, Thawait GK, Chalian M, Farahani SJ, et al. Impact of high resolution 3 tesla MR neurography (MRN) on diagnostic thinking and therapeutic patient management. Eur Radiol 2016;26:1235-1244 https://doi.org/10.1007/s00330-015-3958-y
  6. Khodarahmi I, Fritz J. The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Invest Radiol 2021;56:749-763 https://doi.org/10.1097/RLI.0000000000000801
  7. Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol 2017;46:897-908 https://doi.org/10.1007/s00256-017-2630-9
  8. Chhabra A, Flammang A, Padua A Jr, Carrino JA, Andreisek G. Magnetic resonance neurography: technical considerations. Neuroimaging Clin N Am 2014;24:67-78 https://doi.org/10.1016/j.nic.2013.03.032
  9. Sneag DB, Queler S. Technological advancements in magnetic resonance neurography. Curr Neurol Neurosci Rep 2019;19:75
  10. Davidson EJ, Tan ET, Pedrick EG, Sneag DB. Brachial plexus magnetic resonance neurography: technical challenges and solutions. Invest Radiol 2023;58:14-27 https://doi.org/10.1097/RLI.0000000000000906
  11. Sneag DB, Mendapara P, Zhu JC, Lee SC, Lin B, Curlin J, et al. Prospective respiratory triggering improves high-resolution brachial plexus MRI quality. J Magn Reson Imaging 2019;49:1723-1729 https://doi.org/10.1002/jmri.26559
  12. Del Grande F, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014;34:217-233 https://doi.org/10.1148/rg.341135130
  13. Sneag DB, Rancy SK, Wolfe SW, Lee SC, Kalia V, Lee SK, et al. Brachial plexitis or neuritis? MRI features of lesion distribution in Parsonage-Turner syndrome. Muscle Nerve 2018;58:359-366 https://doi.org/10.1002/mus.26108
  14. Khalilzadeh O, Fayad LM, Ahlawat S. 3D MR neurography. Semin Musculoskelet Radiol 2021;25:409-417 https://doi.org/10.1055/s-0041-1730909
  15. Chhabra A, Subhawong TK, Bizzell C, Flammang A, Soldatos T. 3T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages. Skeletal Radiol 2011;40:1355-1360 https://doi.org/10.1007/s00256-011-1162-y
  16. Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 2008;28:1147-1160 https://doi.org/10.1148/rg.284075031
  17. Chhabra A, Soldatos T, Subhawong TK, Machado AJ, Thawait SK, Wang KC, et al. The application of three-dimensional diffusion-weighted PSIF technique in peripheral nerve imaging of the distal extremities. J Magn Reson Imaging 2011;34:962-967 https://doi.org/10.1002/jmri.22684
  18. Fujii H, Fujita A, Kanazawa H, Sung E, Sakai O, Sugimoto H. Localization of parotid gland tumors in relation to the intraparotid facial nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2019;40:1037-1042 https://doi.org/10.3174/ajnr.A6078
  19. Yoneyama M, Takahara T, Kwee TC, Nakamura M, Tabuchi T. Rapid high resolution MR neurography with a diffusion-weighted pre-pulse. Magn Reson Med Sci 2013;12:111-119 https://doi.org/10.2463/mrms.2012-0063
  20. Kasper JM, Wadhwa V, Scott KM, Rozen S, Xi Y, Chhabra A. SHINKEI--a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol 2015;25:1672-1677 https://doi.org/10.1007/s00330-014-3552-8
  21. Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 2007;58:973-981 https://doi.org/10.1002/mrm.21385
  22. Wang J, Yarnykh VL, Yuan C. Enhanced image quality in black-blood MRI using the improved motion-sensitized driven-equilibrium (iMSDE) sequence. J Magn Reson Imaging 2010;31:1256-1263 https://doi.org/10.1002/jmri.22149
  23. Chen WC, Tsai YH, Weng HH, Wang SC, Liu HL, Peng SL, et al. Value of enhancement technique in 3D-T2-STIR images of the brachial plexus. J Comput Assist Tomogr 2014;38:335-339 https://doi.org/10.1097/RCT.0000000000000061
  24. Zhang Y, Kong X, Zhao Q, Liu X, Gu Y, Xu L. Enhanced MR neurography of the lumbosacral plexus with robust vascular suppression and improved delineation of its small branches. Eur J Radiol 2020;129:109128
  25. Sneag DB, Daniels SP, Geannette C, Queler SC, Lin BQ, de Silva C, et al. Post-contrast 3D inversion recovery magnetic resonance neurography for evaluation of branch nerves of the brachial plexus. Eur J Radiol 2020;132:109304
  26. Daldrup-Link HE. Ten things you might not know about iron oxide nanoparticles. Radiology 2017;284:616-629 https://doi.org/10.1148/radiol.2017162759
  27. Queler SC, Tan ET, Geannette C, Prince M, Sneag DB. Ferumoxytol-enhanced vascular suppression in magnetic resonance neurography. Skeletal Radiol 2021;50:2255-2266 https://doi.org/10.1007/s00256-021-03804-w
  28. Sneag DB, Zochowski KC, Tan ET. MR neurography of peripheral nerve injury in the presence of orthopedic hardware: technical considerations. Radiology 2021;300:246-259 https://doi.org/10.1148/radiol.2021204039
  29. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005;54:507-512 https://doi.org/10.1002/mrm.20605
  30. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22:275-282
  31. Yamashita T, Kwee TC, Takahara T. Whole-body magnetic resonance neurography. N Engl J Med 2009;361:538-539 https://doi.org/10.1056/NEJMc0902318
  32. Jambawalikar S, Baum J, Button T, Li H, Geronimo V, Gould ES. Diffusion tensor imaging of peripheral nerves. Skeletal Radiol 2010;39:1073-1079 https://doi.org/10.1007/s00256-010-0974-5
  33. Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions. J Magn Reson Imaging 2018;47:1171-1189 https://doi.org/10.1002/jmri.25876
  34. Cauley KA, Filippi CG. Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots--clinical applications. AJR Am J Roentgenol 2013;201:W326-W335 https://doi.org/10.2214/AJR.12.9230
  35. Baumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, et al. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 2014;273:185-193 https://doi.org/10.1148/radiol.14132837
  36. Yamasaki T, Fujiwara H, Oda R, Mikami Y, Ikeda T, Nagae M, et al. In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magn Reson Imaging 2015;33:95-101 https://doi.org/10.1016/j.mri.2014.09.005
  37. Farinas AF, Pollins AC, Stephanides M, O'Neill D, Al-Kassis S, Esteve IVM, et al. Diffusion tensor tractography to visualize axonal outgrowth and regeneration in a 4-cm reverse autograft sciatic nerve rabbit injury model. Neurol Res 2019;41:257-264 https://doi.org/10.1080/01616412.2018.1554284
  38. Fritz J, Ahlawat S. Getting quantitative diffusion-weighted MR neurography and tractography ready for clinical practice. J Magn Reson Imaging 2020;51:1138-1139 https://doi.org/10.1002/jmri.26930
  39. Foesleitner O, Sulaj A, Sturm V, Kronlage M, Godel T, Preisner F, et al. Diffusion MRI in peripheral nerves: optimized b values and the role of non-gaussian diffusion. Radiology 2022;302:153-161 https://doi.org/10.1148/radiol.2021204740
  40. Martin-Noguerol T, Montesinos P, Barousse R, Luna A. RadioGraphics update: functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiographics 2021;41:E40-E44 https://doi.org/10.1148/rg.2021200190
  41. Sneag DB, Zochowski KC, Tan ET, Queler SC, Burge A, Endo Y, et al. Denoising of diffusion MRI improves peripheral nerve conspicuity and reproducibility. J Magn Reson Imaging 2020;51:1128-1137 https://doi.org/10.1002/jmri.26965
  42. Zochowski KC, Tan ET, Argentieri EC, Lin B, Burge AJ, Queler SC, et al. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm. Magn Reson Imaging 2022;85:186-192 https://doi.org/10.1016/j.mri.2021.10.038
  43. Antun V, Renna F, Poon C, Adcock B, Hansen AC. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci U S A 2020;117:30088-30095 https://doi.org/10.1073/pnas.1907377117
  44. Antoniadis G. The peripheral nerve: neuroanatomical principles before and after injury. In: Haastert-Talini K, Assmus H, Antoniadis G, eds. Modern concepts of peripheral nerve repair. 1st ed. Cham: Springer, 2017:1-10
  45. Weerasuriya A, Mizisin AP. The blood-nerve barrier: structure and functional significance. Methods Mol Biol 2011;686:149-173 https://doi.org/10.1007/978-1-60761-938-3_6
  46. Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-the-art techniques in treating peripheral nerve injury. Plast Reconstr Surg 2018;141:702-710 https://doi.org/10.1097/PRS.0000000000004121
  47. Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol 2016;39:38-46 https://doi.org/10.1016/j.conb.2016.04.005
  48. Seddon HJ, Medawar PB, Smith H. Rate of regeneration of peripheral nerves in man. J Physiol 1943;102:191-215 https://doi.org/10.1113/jphysiol.1943.sp004027
  49. Chung T, Prasad K, Lloyd TE. Peripheral neuropathy: clinical and electrophysiological considerations. Neuroimaging Clin N Am 2014;24:49-65 https://doi.org/10.1016/j.nic.2013.03.023
  50. Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain 1951;74:491-516 https://doi.org/10.1093/brain/74.4.491
  51. Mackinnon SE. Dellon AL. Surgery of the peripheral nerve. 1st ed. New York: Thieme Medical Publishers, 1988:74-78
  52. Thawait SK, Wang K, Subhawong TK, Williams EH, Hashemi SS, Machado AJ, et al. Peripheral nerve surgery: the role of high-resolution MR neurography. AJNR Am J Neuroradiol 2012;33:203-210 https://doi.org/10.3174/ajnr.A2465
  53. Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, imaging, and pathologic conditions of the brachial plexus. Radiographics 2020;40:1686-1714 https://doi.org/10.1148/rg.2020200012
  54. Leonhard V, Smith R, Caldwell G, Smith HF. Anatomical variations in the brachial plexus roots: implications for diagnosis of neurogenic thoracic outlet syndrome. Ann Anat 2016;206:21-26 https://doi.org/10.1016/j.aanat.2016.03.011
  55. Beaton LE, Anson BJ. The relation of the sciatic nerve and of its subdivisions to the piriformis muscle. Anat Rec 1937;70:1-5 https://doi.org/10.1002/ar.1090700102
  56. Eastlack J, Tenorio L, Wadhwa V, Scott K, Starr A, Chhabra A. Sciatic neuromuscular variants on MR neurography: frequency study and interobserver performance. Br J Radiol 2017;90:20170116
  57. Hernando MF, Cerezal L, Perez-Carro L, Abascal F, Canga A. Deep gluteal syndrome: anatomy, imaging, and management of sciatic nerve entrapments in the subgluteal space. Skeletal Radiol 2015;44:919-934 https://doi.org/10.1007/s00256-015-2124-6
  58. Koh E. Imaging of peripheral nerve causes of chronic buttock pain and sciatica. Clin Radiol 2021;76:626.e1-626.e11 https://doi.org/10.1016/j.crad.2021.03.005
  59. Martin HD, Shears SA, Johnson JC, Smathers AM, Palmer IJ. The endoscopic treatment of sciatic nerve entrapment/deep gluteal syndrome. Arthroscopy 2011;27:172-181 https://doi.org/10.1016/j.arthro.2010.07.008
  60. Ly J, Scott K, Xi Y, Ashikyan O, Chhabra A. Role of 3 tesla MR neurography and CT-guided injections for pudendal neuralgia: analysis of pain response. Pain Physician 2019;22:E333-E344 https://doi.org/10.36076/ppj/2019.22.E333
  61. Lo L, Duarte A, Bencardino JT. Nerve entrapments in the pelvis and hip. Semin Musculoskelet Radiol 2022;26:153-162 https://doi.org/10.1055/s-0042-1750211
  62. Bendszus M, Wessig C, Solymosi L, Reiners K, Koltzenburg M. MRI of peripheral nerve degeneration and regeneration: correlation with electrophysiology and histology. Exp Neurol 2004;188:171-177 https://doi.org/10.1016/j.expneurol.2004.03.025
  63. Chalian M, Chhabra A. Top-10 tips for getting started with magnetic resonance neurography. Semin Musculoskelet Radiol 2019;23:347-360 https://doi.org/10.1055/s-0039-1677727
  64. Soldatos T, Andreisek G, Thawait GK, Guggenberger R, Williams EH, Carrino JA, et al. High-resolution 3-T MR neurography of the lumbosacral plexus. Radiographics 2013;33:967-987 https://doi.org/10.1148/rg.334115761
  65. Miller TT, Reinus WR. Nerve entrapment syndromes of the elbow, forearm, and wrist. AJR Am J Roentgenol 2010;195:585-594 https://doi.org/10.2214/AJR.10.4817
  66. Kim S, Chung BM, Kim WT, Lee GY, Hur J, Kim JH, et al. Diagnosing ulnar neuropathy at the elbow on MRI: importance of the longitudinal extent of the hyperintense ulnar nerve. Skeletal Radiol 2022;51:1473-1481 https://doi.org/10.1007/s00256-022-03990-1
  67. Chhabra A, Madhuranthakam AJ, Andreisek G. Magnetic resonance neurography: current perspectives and literature review. Eur Radiol 2018;28:698-707 https://doi.org/10.1007/s00330-017-4976-8
  68. Chhabra A, Williams EH, Wang KC, Dellon AL, Carrino JA. MR neurography of neuromas related to nerve injury and entrapment with surgical correlation. AJNR Am J Neuroradiol 2010;31:1363-1368 https://doi.org/10.3174/ajnr.A2002
  69. Yasunaga H, Shiroishi T, Ohta K, Matsunaga H, Ota Y. Fascicular torsion in the median nerve within the distal third of the upper arm: three cases of nontraumatic anterior interosseous nerve palsy. J Hand Surg Am 2003;28:206-211 https://doi.org/10.1053/jhsu.2003.50021
  70. Rossey-Marec D, Simonet J, Beccari R, Michot C, Bencteux P, Dacher JN, et al. Ultrasonographic appearance of idiopathic radial nerve constriction proximal to the elbow. J Ultrasound Med 2004;23:1003-1007 https://doi.org/10.7863/jum.2004.23.7.1003
  71. Thawait SK, Chaudhry V, Thawait GK, Wang KC, Belzberg A, Carrino JA, et al. High-resolution MR neurography of diffuse peripheral nerve lesions. AJNR Am J Neuroradiol 2011;32:1365-1372 https://doi.org/10.3174/ajnr.A2257
  72. Kronlage M, Baumer P, Pitarokoili K, Schwarz D, Schwehr V, Godel T, et al. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol 2017;264:1434-1443 https://doi.org/10.1007/s00415-017-8543-7
  73. Oka N, Kawasaki T, Unuma T, Shigematsu K, Sugiyama H. Different profiles of onion bulb in CIDP and CMT1A in relation to extracellular matrix. Clin Neuropathol 2013;32:406-412 https://doi.org/10.5414/NP300597