• Title/Summary/Keyword: Advanced imaging

Search Result 845, Processing Time 0.035 seconds

Opto-mechanical Design of Monocrystalline Silicon Mirror for a Reflective Imaging Optical System

  • Liu, Xiaofeng;Zhang, Xin;Tian, Fuxiang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.236-243
    • /
    • 2022
  • Monocrystalline silicon has excellent properties, but it is difficult to design and manufacture silicon-based mirrors that can meet engineering applications because of its hard and brittle properties. This paper used monocrystalline silicon as the main mirror material in an imaging system to carry out a feasibility study. The lightweight design of the mirror is completed by the method of center support and edge cutting. The support structure of the mirror was designed to meet the conditions of wide temperature applications. Isight software was used to optimize the feasibility sample, and the optimized results are that the root mean square error of the mirror surface is 3.6 nm, the rigid body displacement of the mirror is 2.1 ㎛, and the angular displacement is 2.5" under the conditions of a temperature of ∆20 ℃ and a gravity load of 1 g. The optimized result show that the silicon-based mirror developed in this paper can meet the requirements of engineering applications. This research on silicon-based mirrors can provide guidance for the application of other silicon-based mirrors.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

Interpretation through Digital Imaging: Reflectance Transformation Imaging(RTI) as a Tool for Understanding Paintings

  • Min, Jihyun;Yoo, Eunsoon;Choi, Heesu;Ahn, Sohyun;Ahn, Jaehong;Ahn, Sangdoo
    • International Journal of Contents
    • /
    • v.16 no.2
    • /
    • pp.41-50
    • /
    • 2020
  • This paper presents Reflectance Transformation Imaging (RTI) as a tool to support the study of paintings and authentication. Manufacturing techniques of the artist are reviewed through the comparison between liberal perspectives and digital imaging techniques. In this study, RTI was applied to focus on the detailed textural information of eight paintings by Korean artist Lee Ji-ho. The RTI result visualizes shallow reliefs of brush strokes and different mediums on the surface technically enhanced through imaging filters, and these morphological textures on the surface act as a key factor in understanding the characteristics of the artist. The surface morphology and art criticism work as qualitative indicators to analyze the change of artistic techniques through time, and the usage of different mediums. The results of this study confirm that the RTI technique can be used as an analysis device in the study of paintings.

Development of a virtual studio system for live broadcasting of election results: VdreamSet

  • Ko, Hee-Dong;Kim, Hyun-Suk;Kim, Lae-Hyun;Ahn, Jae-Hong;Park, Kyung-Dong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.213.1-218
    • /
    • 1999
  • A virtual studio is a new video production environment using interactive computer graphics and imaging media technology. The traditional chroma-keying with two-dimensional background is replaced by an advanced keying method with a dynamic computer-generated, three-dimensional background. We have developed a virtual studio system that is practical to use in the real production environment. It has not only essential features that are common among various commercial virtual studio systems, but also unique feature that help the producer to construct virtual studio sets and scenarios efficiently such as span graph, robust backup controller, and 3 dimensional character generator supporting all languages. Our virtual studio system was used in live broadcasting and proved that the system was practical enough. In this paper, we will introduce the structure and the major features of our system, called VdreamSet, and application examples to broadcasting.

Development and Verification of the Compact Airborne Imaging Spectrometer System

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.397-408
    • /
    • 2008
  • A wide variety of applications of imaging spectrometer have been proved using data from airborne systems. The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the airborne hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems are to be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS has to be calibrated and validated with the calibration equipments such as the integrating sphere and spectral lamps. To improve data quality and its availability, it is the most important to understand the mechanism of imaging spectrometer system and the radiometric and spectral characteristics. The several performance tests of the CAISS were conducted in the camera system level. This paper presents the major characteristics of the CAISS, and summarizes the results of performance tests in the camera system level.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

Studies on the millimeter-wave Passive Imaging System III (밀리미터파 수동 이미정 시스템 연구 III)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.111-116
    • /
    • 2007
  • We have developed a passive millimeter wave (PMMW) imaging system with two-dimensional imaging arrays. For the imaging system we achieved single-substrate imaging-array element which include all necessary component such as Fermi tapered slot antenna (TSA), a balun, LNA's and a detector circuit on it. Two-dimensional arrays for real-time imaging at the 35 GHz band are currently under development. We will be able to make an advanced PMMW image system based on our system with the $2\times2$ imaging array in the near future.

NURBS Surface Deformation with 3D Target Curve for Virtual Design (가상 디자인을 위한 3 차원 목표곡선을 이용한 곡면 변형)

  • Lee, Jeong-In;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.474-479
    • /
    • 2006
  • 컴퓨터 기술이 발전함에 따라 3 차원 입력시스템을 통한 모델링이 가능하게 되었다. 2 차원 시스템은 평면 입력을 공간상의 데이터로 바꾸기 위한 많은 기능과 메뉴들이 존재하지만 3 차원 시스템에서는 그러한 복잡한 기능 없이 입력 데이터가 곧바로 모델링에 적용될 수 있다. 하지만 아직까지 3 차원 입력시스템에서 모델링을 수행하는 디자이너에게 익숙한 스케치 방법을 고려하지 못하고 있는 실정이다. 디자이너에게 가장 익숙한 모델링 방법은 스케치북에 선으로 그림을 그리는 것이기 때문에, 모델을 변형하는 방법은 이를 벗어나지 않도록 해야 한다. 평면 스케치에서 디자이너가 그리는 선은 모델의 윤곽을 잡아주고 모델의 특징이 되는 부분을 표현하게 된다. 이러한 선의 입력을 통한 스케치를 3 차원 모델링에서 그대로 사용하기 위해서는 공간에서의 점이나 면이 아닌 선의 입력을 모델링에 적용할 수 있어야 한다.

  • PDF

A Study on the Effectiveness of 3D Input Interface by Using Spatial Dynamic Grid (공간 격자를 이용한 3 차원 공간 입력 인터페이스의 효용성에 관한 연구)

  • Han, Seung-Hoon;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.431-436
    • /
    • 2006
  • 본 논문은 몰입형 가상환경 시스템에서 3 차원 공간입력 인터페이스 시스템을 이용한 3 차원 오브젝트 설계, 오브젝트의 변형 등의 작업을 수행하기 위해 몰입형 가상환경 시스템이 갖는 부정확한 입력과 접근성을 향상시키기 위한 연구이다. 몰입형 가상환경 시스템은 가상 디자인 분야에서의 활용이 예견되고 있으나, 사용자의 입력이 부정확한 단점으로 인하여 정밀한 입력을 요구하는 작업을 진행하기 위해 많은 어려움을 겪고 있다. 본 논문에서는 가상 디자인 분야에서의 사용자 입력 정밀도를 향상 시키는 방법으로 공간격자를 제시하고 두 가지 실험을 통해 공간격자를 사용할 때 사용하지 않았을 때 보다 좀 더 높은 입력 정밀도를 갖는 것을 알 수 있었다.

  • PDF

Implementation of real time VJing responding to user's motion

  • Jung, Haehyun;Kim, Hyunggi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.41-50
    • /
    • 2015
  • As various media have developed in modern society, frequency of use of interactive media has increased which makes interactive function that uses and handles projection mapping and LED screen in set design of broadcasting, concert, play, musical and EDM(Electronic dance music) in real time possible. Development of various media led today's viewers to have higher cultural desire and the need of various interactive performance contents to receive more attention.[1]. This thesis implemented real time VJing that responds to user's motion based on existing H/W by utilizing real time interactive elements.