• Title/Summary/Keyword: Advanced imaging

Search Result 845, Processing Time 0.029 seconds

Organized hematoma of temporomandibular joint

  • Lee, Chena;Yook, Jong In;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.73-77
    • /
    • 2018
  • Organized hematoma is a pseudo-tumorous lesion mostly occurs at sinonasal cavity and often confused with malignant neoplasm. The initiation of this lesion is blood accumulation, probably due to trauma, and this hematoma develops into organized hematoma as it encapsulated with fibrous band and neo-vascularized. Since it is uninformed at temporomandibular joint (TMJ) region, imaging diagnosis might be challenging. Also, delayed detection of mass involving TMJ is not uncommon due to confusion with joint disorder. Thus, this report introduced the rare pathology, organized hematoma on TMJ with advanced imaging features. Also, diagnostic point for early detection was described for the TMJ tumors and pseudo-tumors considering complexity of surgical intervention in this region.

Unwanted effects due to interactions between dental materials and magnetic resonance imaging: a review of the literature

  • Chockattu, Sherin Jose;Suryakant, Deepak Byathnal;Thakur, Sophia
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2018
  • Magnetic resonance imaging (MRI) is an advanced diagnostic tool used in both medicine and dentistry. Since it functions based on a strong uniform static magnetic field and radiofrequency pulses, it is advantageous over imaging techniques that rely on ionizing radiation. Unfortunately, the magnetic field and radiofrequency pulses generated within the magnetic resonance imager interact unfavorably with dental materials that have magnetic properties. This leads to unwanted effects such as artifact formation, heat generation, and mechanical displacement. These are a potential source of damage to the oral tissue surrounding the affected dental materials. This review aims to compile, based on the current available evidence, recommendations for dentists and radiologists regarding the safety and appropriate management of dental materials during MRI in patients with orthodontic appliances, maxillofacial prostheses, dental implants, direct and indirect restorative materials, and endodontic materials.

Halide Perovskites for X-ray Detection: The Future of Diagnostic Imaging

  • Nam Joong Jeon;Jung Min Cho;Jung-Keun Lee
    • Progress in Medical Physics
    • /
    • v.33 no.2
    • /
    • pp.11-24
    • /
    • 2022
  • X-ray detection has widely been applied in medical diagnostics, security screening, nondestructive testing in the industry, etc. Medical X-ray imaging procedures require digital flat detectors operating with low doses to reduce radiation health risks. Recently, metal halide perovskites (MHPs) have shown great potential in high-performance X-ray detection because of their attractive properties, such as strong X-ray absorption, high mobility-lifetime product, tunable bandgap, low-temperature fabrication, near-unity photoluminescence quantum yields, and fast photoresponse. In this paper, we review and introduce the development status of new perovskite X-ray detectors and imaging, which have emerged as a new promising high-sensitivity X-ray detection technology. We discuss the latest progress and future perspective of MHP-based X-ray detection in medical imaging. Finally, we compare the conventional detection methods with quantum-enhanced detection, pointing out the challenges and perspectives for future research directions toward perovskite-based X-ray applications.

Paradigm Shift in Prostate Cancer Diagnosis: Pre-Biopsy Prostate Magnetic Resonance Imaging and Targeted Biopsy

  • Jung Jae Park;Chan Kyo Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.625-637
    • /
    • 2022
  • With regard to the indolent clinical characteristics of prostate cancer (PCa), the more selective detection of clinically significant PCa (CSC) has been emphasized in its diagnosis and management. Magnetic resonance imaging (MRI) has advanced technically, and recent international cooperation has provided a standardized imaging and reporting system for prostate MRI. Accordingly, prostate MRI has recently been investigated and utilized as a triage tool before biopsy to guide tissue sampling to increase the detection rate of CSC beyond the staging tool for patients in whom PCa was already confirmed on conventional systematic biopsy. Radiologists must understand the current paradigm shift for better PCa diagnosis and management. This article reviewed the recent literature, demonstrating the diagnostic value of pre-biopsy prostate MRI with targeted biopsy and discussed unsolved issues regarding the paradigm shift in the diagnosis of PCa.

Technologies for 3D Assembly and Chip-level Stack

  • Bonkohara, Manabu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.65-89
    • /
    • 2003
  • Next Highly sophisticated communication generation of the Advanced Electronics and Imaging processing society will require a vast information volume and super high speed signal transport and information instruction. This means that super high technology should be created for satisfying the demand. It's also required the high reliability of the communication system itself, It will be supported the new advanced packaging technology of the 3 Dimensional structured system and system integration technology. Here is introduced the new 3 Dimensional technology for IC nnd LSI packaging and Opt-electronics Packaging of ASET activity in Japan.

  • PDF

Study on Application of Ultrasonic Propagation Imager for Non-destructive Evaluation of Composite Lattice Structure (복합재 격자 구조 비파괴평가를 위한 초음파전파 영상화 시스템 활용 연구)

  • Park, Jae-Yoon;Shin, Hye-Jin;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • Composite lattice structures are tried to be used in various fields because of its benefit in physical properties. With increase of demand of the composite lattice structure, nondestructive testing technology is also required to certificate the quality of the manufactured structures. Recently, research on the development of the composite lattice structure in Republic of Korea was started and accordingly, fast and accurate non-destructive evaluation technology was needed to finalize the manufacturing process. This paper studied non-destructive testing methods for composite lattice structure using laser ultrasonic propagation imaging systems. Pulse-echo ultrasonic propagation imaging system was able to inspect a rib structure wrapped with a skin structure. To reduce the time of inspection, a band divider, which can get signal in different frequency bands at once, was developed. Its performance was proved in an aluminum sandwich panel. In addition, to increase a quality of results, curvature compensating algorithm was developed. On the other hand, guided wave ultrasonic propagation imaging system was applied to inspect delamination in a rib structure. To increase an area of inspection, multi-source ultrasonic wave propagation image was applied, and defects were successfully highlighted with variable time window amplitude mapping algorithm. These imply that ultrasonic propagation imaging systems provides fast and accurate non-destructive testing results for composite lattice structure in a stage of the manufacturing process.

Current Status of Imaging Physics & Instrumentation In Nuclear Medicine (핵의학 영상 물리 및 기기의 최신 동향)

  • Kim, Hee-Joung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.83-87
    • /
    • 2008
  • Diagnostic and functional imaging device have been developed independently. The recognition that combining of these two devices can provide better diagnostic outcomes by fusing anatomical and functional images. The representative examples of combining devices would be PET/CT and SPECT/CT. Development and their applications of animal imaging and instrumentation have been very active, as new drug development with advanced imaging device has been increased. The development of advanced imaging device resulted in researching and developing for detector technology and imaging systems. It also contributed to develop a new software, reconstruction algorithm, correction methods for physical factors, image quantitation, computer simulation, kinetic modeling, dosimetry, and correction for motion artifacts. Recently, development of MRI and PET by combining them together was reported. True integration of MRI and PET has been making the progress and their results were reported. The recent status of imaging and instrumentation in nuclear medicine is reported in this paper.

FUV IMAGING SPECTROSCOPIC OBSERVATIONS OF INTERSTELLAR MEDIUM WITH FIMS

  • SEON KWANG-IL;HAN WONYONG;LEE DAE-HEE;NAM UK-WON;PARK JANG-HYUN;YUK IN-SOO;JIN HO;MIN KYUNG WOOK;RYU KWANG-SUN;EDELSTEIN JERRY;KORPELA ERIC
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.69-72
    • /
    • 2005
  • The FIMS (Far-ultraviolet IMaging Spectrograph; also known as SPEAR, Spectroscopy of Plasma Evolution from Astrophysical Radiation) is the primary payload of the STSAT-1, the first Korean science satellite, which was launched in September, 2003. The FIMS performs spectral imaging of diffuse far-ultraviolet emission with the unprecedented wide field of view and the relatively good spectral resolution. We present far-ultraviolet spectral observations of highly ionized interstellar medium including supernova remnants, superbubbles, soft X-ray shadows, and the molecular hydrogen fluorescent emission lines. The FIMS has detected He II, C III, 0 III, O IV, Si IV, O VI, and $H_2$ fluorescent emission lines. The emission lines arise in shocked or thermally heated and in photo-ionized gases. We present an overview of the FIMS instrument and its initial observational results.

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Investigation of Near Infrared Radiation Based Screening for Video-Fluoroscopy Swallowing Studies (비디오투시연하검사 스크리닝을 위한 근적외선 기술 조사)

  • Park, Ji-Su;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • With the recent advances in radiological science, there was radiographic techniques development and several researches to diagnosing dysphagia. We proposed the new Imaging technology based on Near Infrared radiation (NIR) for video fluoroscopic swallowing study (VFSS). To reduce the risk of the VFSS examination for swallowing rehabilitation, multi-NIR camera system comprised. Based on the multi-NIR camera imaging system, Computational simulation was conducted to identify the potential of the multi-NIR camera imaging system as a clinical tool (screening system). As a result of the simulation applied in this study, the proposed system has a potential to be a clinical solution although there is a few of limitations. we believe that it will be a good tool to support the VFSS as a screening technology in clinical fields.