• Title/Summary/Keyword: Advanced development

Search Result 8,588, Processing Time 0.03 seconds

Rapid, Simultaneous Detection of Various Biological Toxin Genes Using Multiplex Reverse Transcription Loop-Mediated Isothermal Amplification(RT-LAMP) (다중 역전사-루프매개등온증폭법(RT-LAMP)를 이용한 생물 독소 유전자 신속 진단법)

  • Seungho Lee;Chanho Chung;Sehun Gu;Jungeun Kim;Hyeongseok Yun;Daesang Lee;Gyeunghaeng Hur;Donghyun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.516-527
    • /
    • 2024
  • Rapid, early, accurate detection and identification of the various pathogenic agents associated with the development of biological weapons is critical in preventing loss of life and limiting the impact of these organisms when used against civilian or military targets. The aim of this study was to produce a system for the simple, rapid, accurate and simultaneous detection and identification of Ricin, Botulinum toxin B and Staphylococcal enterotoxin B as a proof of principle for developing field appropriate reverse transcription loop-mediated isothermal amplification systems for the accurate identification of potential biological threats. These systems were designed to facilitate the identification of potential threats even in remote or resource-limited locations.

Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development (한국형 전투기(KF-X) AESA 레이다 개발 검증을 위한 점진적인 시험평가 전략)

  • Shinyoung Cho;Yongkil Kwak;Hyunseok Oh;Hyesun Ju;Hongwoo Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-394
    • /
    • 2024
  • This paper describes a progressive test and evaluation strategy for verification of Korean Fighter eXperimental (KF-X) AESA(Active Electronically Scanned Array) radar development. Three progressive stages of development test and evaluation were officially performed from simulated test conditions to actual operating conditions according to standards: radar function/performance and avionics integration. KF-X AESA radar development is repeatedly verified by progressive stages consisting of five tests: Roof-lab ground test, System Integration Laboratory(SIL) ground test, Flying Test Bed(FTB) test, KF-X ground test, and KF-X flight test. As a result, the risk factor decreases as stages and tests progress. Therefore, development test and evaluation of KF-X AESA radar are successfully performed at low development risk.

Effect of Al and Cr on Oxidation of Fe-Al and Fe-Cr Alloys (Fe-Al과 Fe-Cr계 합금의 내 산화성에 미치는 Al과 Cr의 영향)

  • Kim, Tae-Wan;Jo, Seung-Hoon;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.981-988
    • /
    • 2010
  • The effects of Cr and Al contents in Fe-Al and Fe-Cr alloys on oxidation resistance, hardness, and the thermal expansion coefficient were investigated. Fe-Al and Fe-Cr alloys above 10wt.%Al and 20wt.%Cr contents have a high oxidation resistance. The hardness of the Fe-Al and Fe-Cr alloys increased with an increase in Al and Cr contents due to solid solution or formation of an intermetallic compound. The coefficients of thermal expansion of the Fe-Al alloys were higher than those of the Fe-Cr alloys because the coefficient of thermal expansion of Al was higher than that of Fe and Cr.

Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica

  • Jo, Eun-A.;Tewari, Rajesh Kumar;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.207-212
    • /
    • 2008
  • Plantlets of Alocasia amazonica regenerated under a photon flux density (PFD) of 15 or $30{\mu}mol\;m^{-2}s^{-1}$ showed better growth and development than those grown under higher PFDs. While chlorophyll a and chlorophyll b decreased, the number of stomata increased with increasing PFD. Photoperiods also affected plantlet growth and stomatal development. Highest growth was observed for the short photoperiod (8/16 h) and for equinoctial (12/12 h) light and dark periods. Very few stomata developed in the leaves of plantlets grown under a short photoperiod (8/16 h) and the number of stomata increased with increasing light period. In conclusion, both light intensity and photoperiod independently affect growth of A. amazonica and development of stomata, depending on the intensity and duration of light treatment.