• Title/Summary/Keyword: Advanced composite materials

Search Result 1,135, Processing Time 0.03 seconds

Development of Porous Metal Materials and Applications

  • Fang, Y.;Wang, H.;Zhou, Y.;Kuang, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.599-600
    • /
    • 2006
  • This paper described the state of art of porous metal materials, the typical manufacturing technologies and performances of sintered metal porous materials, with emphasis on the recent research achievements of CISRI in development of porous metal materials. High performance porous metal materials, such as metallic membrane, sub-micron asymmetric composite porous metal, large dimensional and structure complicated porous metal aeration cones and tube, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed. Their applications in energy industry, petrochemical industry, clean coal process and other industrial fields were introduced and discussed.

  • PDF

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Pervaporation of TFEA/MA/Water Mixtures through PVA Composite Membranes

  • Ahn, Sang-Man;Kim, Jeong-Hoon;Lee, Yong-Taek;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.133-147
    • /
    • 2005
  • In order to investigate applicability for 2,2,2-trifluoroethyl methacrylate (TFEMA) produced by esterification of 2,2,2-trifluoroethanol(TFEA) and methacrylic acid(MA) using pervaporation membrane, poly(vinyl alcohol) (PVA) composite membranes were prepared with glutaraldehyde(GA) onto porous polyethersulfone(PES) support. The degree of crosslinking and thickness of PVA coating layer were analyzed by swelling test and SEM(scanning electron microscopy), respectively. Pervaporation test was done with two feed mixures; TFEA/water, MA/water. The pervaporation data were obtained as a function of content of crosslinking agent, feed composition, and operating temperature, respectively. In case of TFEA-water(90/10 wt%) feed mixture at $80^{\circ}C$, the optimized membrane showed the high permeation flux of 1.5 $kg/m^2hr$ and separation factor of 320. In case of MA-water(90/10 wt%) feed mixture, the membranealso showed high permeation flux of 2.3 $kg/m^2hr$ and separation factor of 740 in same conditions.

  • PDF

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Synthesis of CNT Arrays with Controlling Morphology for High Spinnablility (방적성 향상을 위한 탄소나노튜브 어레이의 형상제어 및 특성평가)

  • Jeong, Seung Pil;Ryu, Seongwoo;Moon, Sook Young
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.265-269
    • /
    • 2019
  • The direct spinning of carbon nanotube (CNT) fibers is a promising method in the high performance composite materials. However, most of the reported CNT arrays do not have spinning properties because of their limited synthesis conditions. In this study, we investigate the properties of spinnable CNT arrays, which is closely related to the morphology of CNT array. The array morphology controlled by controlling the conditions of catalyst, carbon source, etc. By additional carbon source of ethylene and changing the composition of the catalyst, the waviness of the CNT array can be remarkably reduced, which leads to improve of the spinning properties. The synthesized CNT arrays were well aligned along c-axis and the synthesis conditions of the spinning array could be derived.

Microstructure, Hardness, and Fracture Toughness of Surface Composites Fabricated by High-Energy Electron-Beam Irradiation of Fe-Based Metamorphic Alloy Powders and VC Powders (철계 반비정질 합금 분말과 VC 분말을 고에너지 전자빔으로 투사하여 제조된 표면복합재료의 미세조직, 경도, 파괴인성)

  • Nam, Duk-Hyun;Do, Junghyun;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.634-645
    • /
    • 2008
  • In this study, surface composites were fabricated with Fe-based amorphous alloy powders and VC powders by high-energy electron beam irradiation, and the correlation of their microstructure with hardness and fracture toughness was investigated. Mixture of Fe-based metamorphic powders and VC powders were deposited on a plain carbon steel substrate, and then electron beam was irradiated on these powders without flux to fabricate surface composites. The composite layers of 1.3~1.8 mm in thickness were homogeneously formed without defects and contained a large amount (up to 47 vol.%) of hard $Cr_2B$ and $V_8C_7$ crystalline particles precipitated in the solidification cell region and austenite matrix, respectively. The hardness of the surface composites was directly influenced by hard $Cr_2B$ and $V_8C_7$ particles, and thus was about 2 to 4 times greater than that of the steel substrate. Observation of the microfracture process and measurement of fracture toughness of the surface composites indicated that the fracture toughness increased with increasing additional volume fraction of $V_8C_7$ particles because $V_8C_7$ particles effectively played a role in blocking the crack propagation along the solidification cell region heavily populated with $Cr_2B$ particles. Particularly in the surface composite fabricated with Fe-based metamorphic powders and 30 % of VC powders, the hardness and fracture toughness were twice higher than those of the surface composite fabricated without mixing of VC powders.

Fabrication and Evaluation of 5 vol%CNT/Al Composite Material by a Powder in Sheath Rolling Method (분말시스압연법에 의한 5 vol%CNT/Al 복합재료의 제조 및 평가)

  • Hong, Dongmin;Kim, Woo-Jin;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.607-612
    • /
    • 2013
  • A powder in sheath rolling method was applied to the fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A 6061 aluminum alloy tube with outer diameter of 31 mm and wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powder and CNTs with a volume content of 5% was filled in the tube by tap filling and then processed to an 85% reduction using multi-pass rolling after heating for 0.5 h at $400^{\circ}C$. The specimen was then further processed at $400^{\circ}C$ by multi-pass hot rolling. The specimen was then annealed for 1 h at various temperatures that ranged from 100 to $500^{\circ}C$. The relative density of the 5vol%CNT/Al composite fabricated using powder in sheath rolling increased with increasing of the rolling reduction, becoming about 97% after hot rolling under 96 % total reduction. The relative density of the composite hardly changed regardless of the increasing of the annealing temperature. The average hardness also had only slight dependence on the annealing temperature. However, the tensile strength of the composite containing the 6061 aluminum sheath decreased and the fracture elongation increased with increasing of the annealing temperature. It is concluded that the powder in sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.