DOI QR코드

DOI QR Code

Synthesis of CNT Arrays with Controlling Morphology for High Spinnablility

방적성 향상을 위한 탄소나노튜브 어레이의 형상제어 및 특성평가

  • Jeong, Seung Pil (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Ryu, Seongwoo (Department of Advanced Materials Science and Engineering, The University of Suwon) ;
  • Moon, Sook Young (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2019.06.18
  • Accepted : 2019.10.11
  • Published : 2019.10.31

Abstract

The direct spinning of carbon nanotube (CNT) fibers is a promising method in the high performance composite materials. However, most of the reported CNT arrays do not have spinning properties because of their limited synthesis conditions. In this study, we investigate the properties of spinnable CNT arrays, which is closely related to the morphology of CNT array. The array morphology controlled by controlling the conditions of catalyst, carbon source, etc. By additional carbon source of ethylene and changing the composition of the catalyst, the waviness of the CNT array can be remarkably reduced, which leads to improve of the spinning properties. The synthesized CNT arrays were well aligned along c-axis and the synthesis conditions of the spinning array could be derived.

직접적으로 탄소 나노 튜브(CNT) 섬유를 방사하는 기술은 향후 고성능 소재분야에서 유망한 방법이다. 수직으로 정렬된 CNT 어레이에서 직접 방사하는 연구는 보고된 이래 연구가 활발히 진행되고 있다. 그러나, 보고된 CNT 어레이의 대부분은 방사성을 갖고 있지 않다. 이 연구에서는, 방사특성을 향상시기키 위해 촉매, 탄소원등의 조건을 제어함으로써, CNT의 방사성 정도가 CNT 어레이의 형태와 밀접하게 관련되어 있음을 증명하였다. 탄소원인 아세틸렌에 추가 탄소원으로 에틸렌을 첨가함으로서 CNT 어레이의 waviness를 감소시킬 수 있었으며, 이는 촉매의 활성화를 유도하여 CNT축 방향으로의 선형화를 증가시켰다. 또한 이러한 탄소원 조성의 변화는 촉매 입자의 유착(coalescence)을 제어함으로써, 어레이의 밀도 및 합성된 CNT의 직경 과 길이등 물성을 동시에 제어할 수 있었다. 합성된 CNT 어레이는 잘 정렬되어 있으며, 방사 가능한 어레이의 합성조건을 도출할 수 있었다.

Keywords

References

  1. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., and Lanka, S., "Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-reinforced Aluminium Composites", Composites Science and Technology, Vol. 70, No. 16, 2010, pp. 2237-2241. https://doi.org/10.1016/j.compscitech.2010.05.004
  2. Liao, Q., Liu, Z., Liu, W., Deng, C., and Yang, N., "Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites", Scientific Report, Vol. 5, 2015, p. 16543. https://doi.org/10.1038/srep16543
  3. Mayhew E., and Prakash V., "Thermal Conductivity of High Performance Carbon Nanotube Yarn-like Fibers", Journal of Applied Physics, Vol. 115, No. 17, 2014, p. 174306. https://doi.org/10.1063/1.4874737
  4. Coleman, J.A., Khan, U., Blau, W.J., and Gun'ko, Y.K., "Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-polymer Composites", Carbon, Vol. 44, No. 9, 2006, pp. 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
  5. Thostenson, E.T., Ren, Z., and Chou, T.W., "Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review", Composites Science and Technology, Vol. 61, No. 13, 2001, pp. 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  6. Wardle, B.L., Saito, D.S., Garcia, E.J., Hart, A.J., Villoria, R.G., and Verploegen, E.A., "Fabrication and Characterization of Ultrahigh-Volume-Fraction Aligned Carbon Nanotube-Polymer Composites," Adv. Mater., Vol. 20, No. 14, 2008, pp. 2707-2714. https://doi.org/10.1002/adma.200800295
  7. Jiang, K., Li, Q., and Fan, S., "Nanotechnology: Spinning Continuous Carbon Nanotube Yarns", Nature, Vol. 419, 2002, p. 801. https://doi.org/10.1038/419801a
  8. Moon, S.Y., "Controlled Catalytic Domain Formation by Mixed Iron Halide Compounds to Decrease the Waviness of Carbon Nanotube Arrays", RSC Advances, Vol. 5, No. 103, 2015, pp. 84367-84371. https://doi.org/10.1039/C5RA17066D
  9. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., "Water-assisted Highly Efficient Synthesis of Impurity-free Single-walled Carbon Nanotubes", Science, Vol. 306, No. 5700, 2004, pp. 1362-1364. https://doi.org/10.1126/science.1104962
  10. Zhong, G., Hofmann, S., Yan, F., Telg, H., Warner, J.H., Eder, D., Thomsen, C., Milne, W.I., and Robertson, J., "Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests", Journal of Physical Chemistry C, Vol. 113, No. 40, 2009, pp. 17321-17325. https://doi.org/10.1021/jp905134b
  11. Li, Q., Yan, H., Zhang, J., and Liu, Z., "Effect of Hydrocarbons Precursors on the Formation of Carbon Nanotubes in Chemical Vapor Deposition", Carbon, Vol. 42, No. 4, 2004, pp. 829-835. https://doi.org/10.1016/j.carbon.2004.01.070
  12. Carpena-Nunez, J., Boscoboinik, J.A., Saber, S., Rao, R., Zhong, J.Q., Maschmann, M.R., Kidambi, P.R., Dee, N.T., Zakharov, D.N., Hart, A.J., Stach, E.A., and Maruyama, B., "Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth", ACS Nano, Vol. 13, No. 8, 2019, pp. 8736-8748. https://doi.org/10.1021/acsnano.9b01382
  13. Singh, D.K., Lyer, P.K., and Giri, P.K., "Diameter Dependence of Interwall Separation and Strain in Multiwalled Carbon Nanotubes Probed by X-ray Diffraction and Raman Scattering Studies", Diamond and Related Materials, Vol. 19, No. 10, 2010, pp. 1281-1288. https://doi.org/10.1016/j.diamond.2010.06.003