• 제목/요약/키워드: Advanced composite materials

검색결과 1,135건 처리시간 0.024초

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

An experimental study on the static behavior of advanced composite materials drainage pipe member for an undersea tunnel (해저터널용 복합신소재 배수복합관 부재의 정적거동에 관한 실험적 연구)

  • Shin, Jong-Ho;Kim, Kang-Hyun;Kim, Doo-Rae;Ji, Hyo-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제17권2호
    • /
    • pp.65-74
    • /
    • 2015
  • In order to design an advanced composite materials drainage pipe structures for an undersea tunnel, mechanical properties for the lamina types of the structural member must be predetermined. It is also reported that the size effect of the specimen is significant. In this study the tensile tests for the lamina types of the structural member are conducted at the room temperature ($20^{\circ}C$) and the seawater temperature ($0^{\circ}C$). In addition, the mechanical properties are predicted by theory based on the rule of mixtures and elasticity solution technique. The predicted mechanical properties are compared with test results obtained by a test method. In the design of an advanced composite materials drainage pipe structural members for an undersea tunnel, the used mechanical properties must be applied at the room temperature with considering the modified factors. These are to be offered the datum for the design an advanced composite materials drainage pipe structures for an undersea tunnel.

Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 탄탈륨 연속섬유 강화 비정질 복합재료의 미세조직과 기계적 성질)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • 제46권7호
    • /
    • pp.403-411
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.

Improvement of Mechanical Interfacial Properties of Silica/Rubber Composites by Silane Coupling Agent Treatment (실란 커플링제를 이용한 실리카/고무 복합재료의 기계적 계면 물성의 향상)

  • Park, Soo-Jin;Cho, Ki-Sook;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.121-124
    • /
    • 2001
  • Surface-modified silica holds considerable promise in the development of advanced materials for good mechanical properties and stability. In this work, the surface and mechanical interfacial properties of silicas treated with silane coupling agents, such as Y-methacryloxy propyl trimethoxy silane (MPS). Y-glycidoxy propyl trimethoxy silane (GPS), and Y-mercapto propyl trimethoxy silane (MCPS), are investigated. The effect of silane surface treatments of silica on the surface properties and surface energetics are studied in terms of surface functional values and contact angle measurements. And their mechanical interfacial properties of the silica/rubber composites are studied by the composite tearing energy ($G_{IIIC}$). As a result. the mechanical interfacial properties are improved in the case of silane-treated composites compared with untreated one. It reveals that the functional groups on silica surface by silane surface treatments play an important role in improving the degree of adhesion at interfaces in a silica-filled rubber system.

  • PDF

Enhanced plasticity in a bulk amorphous matrix composite

  • Lee, Jae-Chul;Kim, Yu-Chan;Ahn, Jae-Pyoung;Kim, Hyoung-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.54-54
    • /
    • 2003
  • We have developed a Cu-based bulk amorphous composite reinforced with a micron-sized crystalline phase, the (Cu60Zr30Ti10)95Ta5 amorphous matrix composite. The composite demonstrates the ultimate strength of 2332 MPa with a dramatically enhanced fracture strain of 15.3 %. Macroscopic observation of the fractured (Cu60Zr30Ti10)95Ta5 amorphous matrix composite showed the development of multiple shear bands along with numerous branching and deflection of shear bands. Microscopic observation on the amorphous matrix of the composite showed that cracks propagate through the residual amorphous matrix located between nanocrystallites, which had formed during deformation. Simulations based on finite element method were conducted to understand the formation mechanisms of multiple shear bands, the initiation site of shear bands, and interaction of shear bands with crystalline particles. Other microscopic fracture mechanism responsible for the enhanced plasticity was discussed.

  • PDF

Nonlinear Flexural Modelling of Composite Prestressed Concrete Beams Reinforced with Advanced Composite Materials (복합 신소재 프리스트레이트 콘크리트보의 비선형 휨 모델링)

  • ;Naaman, Antoine
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.403-408
    • /
    • 1998
  • The analytical model is developed in order to predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beam which contains advanced composite materials. The block concept is used, which be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiple sliced blocks in a section. The model can successfully predict the flexural behavior of variously reinforced prestressed concrete beams.

  • PDF

Sliding Wear Behavior of UHMWPE against Novel Low Temperature Degradation-Free Zirconia/Alumina Composite

  • Lee, K.Y.;Lee, M.H.;Lee, Y.H.;Seo, W.S.;Kim, D.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.365-366
    • /
    • 2002
  • The sliding wear behavior of ultra high molecular weight polyethylene (UHMWPE) was examined on a novel low temperature degradation-free zirconia/alumina composite material and conventional alumina and zirconia ceramics used for femoral head in total hip joint replacement. The wear of UHMWPE pins against these ceramic disks was evaluated by performing linear reciprocal sliding and repeat pass rotational sliding tests for one million cycles in bovine serum. The weight loss of polyethylene against the novel low temperature degradation-free zirconia/alumina composite disks was much less than those against conventional ceramics for all tests. The mean weight loss of the polyethylene pins was more io the linear reciprocal sliding test than in the repeal pass rotational sliding lest for all kinds of disk materials. Neither the coherent transfer film nor the surface damage was observed on the surface of the novel zirconia/alumina composite disks during the test. The observed r,'stilts indicated that the wear of the polyethylene was closely related to contacting materials and kinematic motions. In conclusion, the novel zirconia/alumina composite leads the least wear of polyethylene among the tested ceramics and demonstrates the potential as lhe alternative materials for femoral head in total hip joint replacement.

  • PDF

Recyclable Polymeric Composite with High Thermal Conductivity (재활용 가능한 고방열 고분자 복합소재 개발)

  • Shin, Haeun;Kim, Chae Bin;Ahn, Seokhoon;Kim, Doohun;Lim, Jong Kuk;Goh, Munju
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.319-326
    • /
    • 2019
  • To address tremendous needs for developing efficiently heat dissipating material with lightweights, a new class of polymer possessing recyclable and malleable characteristics was synthesized for incorporating model functional hexagonal boron nitride (h-BN) filler. A good interfacial affinity between the polymer matrix and the filler along with shear force generated upon manufacturing the composite yielded the final product bearing highly aligned filler via simple hot pressing method. For this reason, the composite exhibited a high thermal conductivity of 13.8 W/mK. Moreover, it was possible to recover the h-BN from the composite without physical/chemical denaturation of the filler by chemically depolymerizing the matrix, thus the recovered filler can be re-used in the future. We believe this polymer could be beneficial as matrix for incorporating many other functional fillers, thus they may find applications in various polymeric composite related fields.

Enhanced Low-field Magnetoresistance of La0.7Sr0.3Mn1+dO3-Mn3O4 Composite Films Prepared by ex-situ Solid Phase Crystallization

  • Kang, Young-Min;Kim, Hyo-Jin;Yoo, Sang-Im
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.265-270
    • /
    • 2012
  • We report improved low-field magnetoresistance (LFMR) effects of the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3-Mn_3O_4$ composite films with the nominal composition of $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-50 mol% $Mn_3O_4$. The composite films were fabricated by ex-situ solid phase crystallization (SPC) of amorphous films at the annealing temperature region of $900-1100^{\circ}C$ for 2 h in a pure oxygen atmosphere. The amorphous films were deposited on polycrystalline $BaZrO_3$ (poly-BZO) substrates by dc-magnetron sputtering at room temperature. The Curie temperatures ($T_C$) of all composite films were insignificantly altered in the range of 368-372 K. The highest LFMR value of 1.29 % in 0.5 kOe with the maximum dMR/dH value of $37.4%kOe^{-1}$ at 300 K was obtained from 900 nm-thick composite film annealed at $1100^{\circ}C$. The improved LFMR properties of the composite films are attributed to effective spin-dependent scattering at the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3$ grain boundaries sharpened by adjacent chemically compatible $Mn_3O_4$ grains.