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Nonlinear Flexural Modelling of Composite Prestressed Concrete
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ABSTRACT

The analytical model is developed in order to predict the nonliear flexural responses of bonded and
unbonded prestressed concrete beam which contains advanced composite materials. The block
concept is used, which can be regarded as an intermediate modeling method between the couple
method with one block and the layered method with multiple sliced blocks in a section. The model
can successfully predict the flexural behavior of variously reinforced prestressed concrete beams.

1. INTRODUCTION

FRP rebar or tendons usually made of glass, aramid, or carbon have beneficial effects compared
to the traditional steel rebars or tendons. The main advantage of reinforcing structural
components by FRP can be summarized as follows[1]: 1) FRP reinforcements are corrosion-free;
2) they are non-magnetic, non-conductive to electricity, and transparent to radio waves; 3) they
have lighter unit weight; and FRP tendons have almost the same or higher tensile strength than
steel tendons. The main objective of this research is to develop an analytical model which can
comprise various characteristics of composite materials, different placement and casting of
composite materials in combination with conventional cementitious matrices. A beam section is
divided by different rectangular blocks characterized by their material property and location in a
beam section. The analytical expressions are formulated for these individual blocks. The model
takes into account the prepeak and postpeak tensile resistance of the matrix. Complete flexural
load-deflections can be generated by the model, which may serve as an useful tool for analyzing
and understanding structural behvaior of a composite prestressed concrete beam and thus
improving their structural performance.

2. DEVELOPMENT OF THE MODEL
2.1 Assumptions of the Model

The following assumptions are made in developing the current model: 1) plane section remains
plane after and before bending(Bernoulli’s principle); 2) symmetrical loading type and tendon
profile geometry; 3) the internal moment resistance at midspan is assumed equal to the externally
applied midspan moment; 4) constitutive relationships for the steel. composite reinforcing bar(i.e,
FRP tendon), concrete or composite matrices known for compression or tension; post-peak tensile
behavior of ductile composite matrix, the crack opening is assumed to be and 6) the eccentricities
of the bonded and/or unbonded prestressing tendons and the external moment varying along the
span in accordance with

the pre-seleted tendon profile and loading type geometries.

22 Development of Model : Block Modeling

A composite beam is composed of different blocks where each block is identified by its own

al
*x0] A7) S E(D) ) B - @A
sexZotuistn el A& e e

5, 2y AFT e

R ety 19989 ¥ SeUEs =82y 403



material property and its geometry(Fig.1). For an incremental increase of bottom strain at midspan,

top strain leading to a sectional equilibrium is sought through the numerically accelerated
method(Modified Regula-Falsi).
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Fig.1 Concept of Block Modeling

For a given bottom strain at j-th section and a numerically chosen trial top strain, sum on axial

forces and moments from each block i at section j can be calculated as follows for each block i
(see Fig.2):

h, E‘i,l
Fit= bx"( eF — oF 1)f . Omyde 4y
Ly =1,

& i-Li

where :

F; ,-‘ = I-th block axial force at section j for loading step k;

e",; , = matrix strain at top of the I-th block at section j for loading step k;

et i~1,; = matrix strain at bottom of the I-th block at section j for loading step k;
Om(y = matrix stress for I-th block material, m(I).

Block i hi

(Part of Section j)

Referencr Line
yOo=0

Fig.2 Typical I-th Block: Possible Strain and Stress Distribution

For all sections(j=0,1,2, . . . , N) along the beam, the total sum on the sectional forces from each
block must vanish for each loading step k:
F*= ?‘;‘f Fi;*=0 (=012 ..., N) @)
ey
Where:

F ik = sum of the axial forces from each block I at section j for loading step k; and

F i j" = I-th block axial force at section j for loading step k.

Once the sectional equilibrium is reached at section j, the sectional moment resistance at . this
section is obtained by adding all the moment resistance from each block :

M k- %BM k. ' (3.a)
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where:

M f = moment resistance at section j for loading step ki (3.b)
& 1]

k _ k . €0 . . . k LIy
ul= el fo amaredera ]l o] 3

= I-th block moment at section j;

b.- hi.
e k= : : 5 (3.d)
2,7 ( e kB _ c k )
5,7 i—1,;
& i—kl i =bottom strain of block I at section j for loading step k;
& ikj = top strain of block I at section j for loading step k;

Yi, ¥i-1 = ¥ coordinate of top and bottom of I-th block, respectively;
h; = y; — ¥;-1 = height of i-th block; and
Om(p = stress function corresponding to I-th block matrix.

Intergration shown above is perfmed using 5-point Gauss-Legeadre gradrature. In order to
estimate curvature distributions, a beam is divided into a number of sections along the beam. At
each of these sectiocins, extreme bottom strain and extreme top strain are numerically found so
that internal moment obtained from this strain distribution is close enough to the externally
applied moment. This procedure is used in [2] and called as "Moment Equilibrium” and is
expland in the following. With two given conditions that sum on axial forces equal to zero and
sum on internal moment equal to a given external moment at a section, two unknowns - top
extreme strain and bottom extreme strain- can be evaluated.

Basic assumptions are made on the selection of bottom strain at extreme bottom fiber at section
j 1). icreasing bottom strain increases the internal moment resistance at any loading; and 2). the

extreme bottom fiber strain at loading step k ( ¢ l;’f) is greater than or equal to the one at
previous loading step k-1 (& b’i;.l )} and less than or equal to the extreme bottom fiber strain
at the rm'dspan' at the loading step k (& l;f )
Ml < kb < mk o o1z L N4 @
J j N

Let, AM k’jL =M k;l -M f and a M k’jU =M Jff M 'f By the assumptions made above,

it can be seen that AM k’].L is less than or equal to zero and & M k’jU is greater or equal to

zero. The extreme bottom fiber strains corresponding- to the lower bound( & b, k'jL ) and the
upper bound( ¢ b,lk}_u ) for the given external moment at section j ( M '?) can be assigned
with the previously obtained strains at section j for loading step k-1, ( & b, lk ;1 ), and at
midspan for loading step k,( e 11;’ l]e\,[ )
bk L _ b k—1 bkou _ b, k,
I3 1.7 e 1.j and ¢ 1.7 & LN - 5)

The correct bottom strain at extreme bottom fiber corresponding to the given external moment of
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bk L _bku
L~ L,j

M f is the moment obtained by the assumed extreme bottom fiber strain at section j and

is then enclosed in the interval [ e 1l Let aM f =M f -M '?, where

loading stage k . Note that at the correct extreme bottom fiber strain ( & ?’f ), the difference

between internal moment resistance and external moment becomes zero (e, &M f = ().

Midspan deflection is calculated using Simpson’s Rule and the Moment Area theorems.
3. PRESTRESSED CONCRETE BEAM
3.1 Prestrains of Tendons at Reference Stage

The prestrains at the initiation stage of iteration can be obtained by.
Epbt = Epebt v € ey v and € poub,l = Epeub.l+geceub,1 6)
where:
€t » €pus,s = 1-th bonded and i-th unbonded tendon prestrains
at the reference stage, respectively;
€ peb,1 s € pceur,t = 1-th bonded tendon effective strain and 1-th unbonded
tendon effective strain, respectively; and
€cebl » €cews,1 = Strain increase in the matrix at the level of I-th bonded and 1-th
unbonded tendon for the load beyond reference stage, respectively.
In calculating unbonded prestrains( € pos ;) above, the bond reduction coefficient( Q) is used to
take into account their member depedent (not section dependent) quantities.
Using the Hooke's law and classical elastic theory, the expression for £2 can be formulated as[3]:

- 9 2
e I S P fo M) - e,(x) - dx _ @

where:
L = beam span;
M ..« = changes in bending moment at the critical section (or midspan in our study);
e . = eccentricity of unbonded tendon at the critical section; and
e (x) = eccentricity of unbonded tendon at the distance x along the beam from the support.

In the current study, the concept of bond reduction coefficient ( £) is adopted numerically rather
than analytically to find strains in unbonded tendons. Concrete strains at the level of these
tendons are found for each section and then these strain values along the beam are integrated
numerically in order to evaluate the corresponding elongation of the unbonded tendon. The
additional strain is obtained by dividing this elongation of the tendon by corresponding tendon
length. This strain is then added to the effective prestrain given at the reference stage.

4. CONSTITUTIVE MODELS

The model incorporates different type of constitutive models of for matrix, reber and prestressed
steel tendons or FRP tendons. The mathematical expression for models can be found in[4-6]

5. COMPARISON WITH TEST RESULT
5.1 Bonded Prestressed Concrete Beam with Steel Tendons.

Fully or partially prestressed concrete beams are used for the comparison{(Fig.3). Loading
conditions and typical cross sections of the beam as well as their properties are given in[7].
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Table.t Summary of reinforcing paramenters

Tensile

Beam Comp. f'c fy ds Tendon dps Pe/bar
Steel Area Steel Area (ksi) (ksi) (in) Area {in) (kips)
- 28D1 573 70.0 - 0.256 475 11.56
PS3 (0.017) 6.25
7.75
\ 342 2#D1 5.29 70.0 80 0.085 6.25 11.31
pPp2s2 .15 (©.017)
. 243 2#D1 6.20 70.0 8.0 0.170 6.25 11.31
PPas3 0.22) (0.017)
20 12 20
10 T _ ===
— —_ —~ w 15 P
3" -~ g <
= g = 5 10}
0 E g
[«]
a 5 - 2 5
0 0 0 ‘
b} 03 06 09 12 03 06 09 12 15 0 03 05 09 12 15

Deflection(in.)

Fig.3(a). Beam PS3
Fig.3 Comparison between the Model and the Test Results for Bonded
Prestressed Concrete Beam({7]

Fig.3(b). Beam PP2S2

Deftection{in)

Deflection(in.)

Fig.3(c). Beam PP2S3

5.2 Bonded Prestressed Concrete Beam with CFRP Tendon

Test results of bonded prestressed concrete beam with CFRP tendons (Fig. 5.10)and SIFCON (8]
are compared with model predictions.

Table.2 Summary of reinforcing parameters

Fig.4(a). Beam TC6

Deflection(in.)

Fig. 4.(b). Beam RFC

Tendons(CFCC) [8).

5.3 Unbonded Prestressed Concrete Beam

Beam Tensile fc fy ds Tendon Dps Pe/bar
Steel Area {ksi) (ksi) (in) Area (in) {kips)
2#4(0.4) 6.10 60.0 11.0 2CFCC(0.094) 6.75 8.93
TC6 2CFCC(0.094) 9.25
. ‘ 8.93
2G270(0.306) 6.10 11.0 1CFCC(0.047) 75 8.93
REC (plain) 2435 2CFCC(0.094) 9.25 893
6.2 1CFCC(0.047) 10.75 893
(SIFCON)
2G160(1.57) 6.2 142 11.0 1CFCC(0.047) 75 893
RFCa-1 (SIFCON) 2CFCC(0.094) 9.25 8.93
1CFCC(0.047) 10.75 8.93
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Fig. 4(c). Beam RFCa-1
Fig.4 Comparison between the Model and the Test Results for Prestressed Beam with Bonded CFRP

Experimental results from Tao et.al.[9] are used to compare with analytical model .
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Table.3 Reinforceing paramenters

Beam Tensile Steel fy fc ds Tendon Area Dps Pe/bar
(As) (ksi) (ksi) (in) (As) (in) (kips}
A-2 0.243 62.4 4.44 9.84 0.152 8.66 19.95
A-3 0.366 62.4 4.44 9.84 0.247 8.66 28.91
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Fig.5(a). Beam A-2 Fig.5(b). Beam A-3
Fig. 5 Comparison between the Model and the Test Results for Prestressed
Concrete Beam with Unbonded Tendons[9)

6. CONCLUSION

The main features of the model can be summarized as follows : 1) the model can predict the
flexural behavior of composite bonded prestressed beam and unbonded prestressed concrete beam;
2) a beam having various combinations of reinforcing materials - i.e., linear elastic material like
FRP rebar or tendon and strain hardening material like conventional rebar or steel tendons - can
be modeled; and 3) the model can trace the residual flexural response of the beam after one (or
more) of the main reinforcements is (or are) fractured. This feature is useful when an overall
flexural behavior of the beam reinforced with both brittle FRP bars (prestressed or nonprestressed)
and conventional ductile reinforcements are desired.
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