• Title/Summary/Keyword: Advanced Sensor

Search Result 1,522, Processing Time 0.029 seconds

Design of uC/OS-II Based Telemetry PCM Encoder for Effective Resource Use (효율적인 자원 활용을 위한 uC/OS-II 기반의 텔레메트리 PCM 엔코더 설계)

  • Geon-hee Kim;Bokki Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.315-322
    • /
    • 2024
  • In this paper, we proposes real-time operating system based PCM encoder for telemetry system that must transmit frames within a set time. In the case of large aircraft, the complexity of the system is increasing because a lot of state information is measured from each sensor and peripheral device. In addition, as the amount measurement data increases, the role of PCM encoder to transmit frames within a set time is becoming important. Existing encoder is inflexible when changing specifications or implementing additional features. Therefore, a design is needed to supplement this. We propose a PCM encoder design applying uC/OS-II. In order to confirm the validity, a simulation was performed to measure the execution time of the task to confirm the performance.

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

Artificial Intelligence-Based Construction Equipment Safety Technology (인공지능 기반 건설장비 안전 기술)

  • Young-Kyo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.566-573
    • /
    • 2024
  • Applying autonomous driving technology to construction sites is very difficult due to safety issues. However, the application of various positioning and sensing devices, such as cameras and radars, to construction equipment is very active. Based on these technological trends, the government is making various efforts, including the Serious Accident Punishment Act and support for industrial safety management expenses, to reduce the incidence of accidents caused by construction equipment and industrial vehicles. And, related industries have been developing various safety equipment over the past few years and applying them to the field. In this paper, we investigate the current status of safety equipment-related technologies currently applied to construction equipment and industrial vehicles, and propose a direction for the development of safety technology in construction equipment based on artificial intelligence. Improving the safety and work efficiency of construction equipment based on the technology proposed in this paper should be reviewed through simulation in the future.

Internet of Things for in Home Health based Monitoring System: Modern Advances, Challenges and Future Directions

  • Omer Iqbal;Tayyeba Iftakhar;Saleem Zubair Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.191-204
    • /
    • 2024
  • IOT has carried out important function in converting the traditional fitness care corporation. With developing call for in population, traditional healthcare structures have reached their outmost functionality in presenting sufficient and as plenty as mark offerings. The worldwide is handling devastating developing antique population disaster and the right want for assisted-dwelling environments is turning into inevitable for senior citizens. There furthermore a determination by means of the use of way of countrywide healthcare organizations to increase crucial manual for individualized, right blanketed care to prevent and manipulate excessive coronial situations. Many tech orientated packages related to Health Monitoring have been delivered these days as taking advantage of net boom everywhere on globe, manner to improvements in cellular and in IOT generation. Such as optimized indoor networks insurance, community shape, and fairly-low device fee performances, advanced tool reliability, low device energy consumption, and hundreds higher unusual common usual performance in network safety and privacy. Studies have highlighted fantastic advantages of integrating IOT with health care location and as era is improving the rate also cannot be that terrific of a problem. However, many challenges in this new paradigm shift notwithstanding the fact that exist, that need to be addressed. So the out most purpose of this research paper is 3 essential departments: First, evaluation of key elements that drove the adoption and boom of the Internet of factors based totally domestic some distance off monitoring; Second, present fashionable improvement of IOT in home a long manner off monitoring shape and key building gadgets; Third, communicate future very last effects and distinct guidelines of such type a long way off monitoring packages going ahead. Such Research is a wonderful manner in advance now not outstanding in IOT Terminology but in standard fitness care location.

A Comparative Errors Assessment Between Surface Albedo Products of COMS/MI and GK-2A/AMI (천리안위성 1·2A호 지표면 알베도 상호 오차 분석 및 비교검증)

  • Woo, Jongho;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Byeon, Yugyeong;Jeon, Uujin;Sohn, Eunha;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1767-1772
    • /
    • 2021
  • Global satellite observation surface albedo data over a long period of time are actively used to monitor changes in the global climate and environment, and their utilization and importance are great. Through the generational shift of geostationary satellites COMS (Communication, Ocean and Meteorological Satellite)/MI (Meteorological Imager sensor) and GK-2A (GEO-KOMPSAT-2A)/AMI (Advanced Meteorological Imager sensor), it is possible to continuously secure surface albedo outputs. However, the surface albedo outputs of COMS/MI and GK-2A/AMI differ between outputs due to Differences in retrieval algorithms. Therefore, in order to expand the retrieval period of the surface albedo of COMS/MI and GK-2A/AMI to secure continuous climate change monitoring linkage, the analysis of the two satellite outputs and errors should be preceded. In this study, error characteristics were analyzed by performing comparative analysis with ground observation data AERONET (Aerosol Robotic Network) and other satellite data GLASS (Global Land Surface Satellite) for the overlapping period of COMS/MI and GK-2A/AMI surface albedo data. As a result of error analysis, it was confirmed that the RMSE of COMS/MI was 0.043, higher than the RMSE of GK-2A/AMI, 0.015. In addition, compared to other satellite (GLASS) data, the RMSE of COMS/MI was 0.029, slightly lower than that of GK-2A/AMI 0.038. When understanding these error characteristics and using COMS/MI and GK-2A/AMI's surface albedo data, it will be possible to actively utilize them for long-term climate change monitoring.

Designing and Fabricating of the High-visibility Smart Safety Clothing (고시인성 스마트 안전의류의 설계 및 제작)

  • Park, Soon-Ja;Kim, Sun-Woong
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.105-116
    • /
    • 2020
  • The purpose of this study is to progress the limitations and disadvantages of existing safety clothing by applying high technology to current safety clothing that is produced and distributed only with fluorescent fabrics and retroreflective materials. Therefore, the industrial suspender-type safety belt and engineering technology are introduced, designed, and fabricated to help save a life in an emergency. First, the suspender-type safety belt to be developed is designed to emit light by LED attached to the film, and the body of the belt-wearer is recognized from a distance through retroreflection from the flashing LED. It aims to support people's safety by preventing accidents during roadside work, rescue activities, and sports activities at night. Second, with the development of advanced devices when the user is in an unconscious state due to distress or falls into an unconscious state due to distress or accident, the tilt sensor of the control unit attached to the belt automatically detects the angle of the human body and generates light and sound. It is intended to further enhance the utilization by mounting a sensing and signaling device that generates a distress signal and shaping it in the form of a belt attached to a vest that can be easily detached from the outside of the garment. When the wearer falls due to an accident, the tilt sensor of this belt detects the angle change and then the controller generates a high-frequency sound and repeated LED blinking signals at the same time. In the case of conventional safety vests, it is almost impossible to detect that the person is wearing a vest when there is no ambient light, but in case of the safety belts in this study, the sound and light signals of the safety belt enable us to find the wearer within 100 meters even when there is no ambient light.

A Study on Termite Monitoring Method Using Magnetic Sensors and IoT(Internet of Things) (자력센서와 IoT(사물인터넷)를 활용한 흰개미 모니터링 방법 연구)

  • Go, Hyeongsun;Choe, Byunghak
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.206-219
    • /
    • 2021
  • The warming of the climate is increasing the damage caused by termites to wooden buildings, cultural properties and houses. A group removal system can be installed around the building to detect and remove termite damage; however, if the site is not visited regularly, every one to two months, you cannot observe whether termites have spread within, and it is difficult to take prompt effective action. In addition, since the system is installed and operated in an exposed state for a long period of time, it may be ineffective or damaged, resulting in a loss of function. Furthermore if the system is installed near a cultural site, it may affect the aesthetic environment of the site. In this study, we created a detection system that uses wood, cellulose, magnets, and magnetic sensors to determine whether termites have entered the area. The data was then transferred to a low power LoRa Network which displayed the results without the necessity of visiting the site. The wood was made in the shape of a pile, and holes were made from the top to the bottom to make it easier for termites to enter and produce a cellulose sample. The cellulose sample was made in a cylindrical shape with a magnet wrapped in cellulose and inserted into the top of a hole in the wood. Then, the upper part of the wood pile was covered with a stopper to prevent foreign matter from entering. It also served to block external factors such as light and rainfall, and to create an environment where termites could add cellulose samples. When the cellulose was added by the termites, a space was created around the magnet, causing the magnet to either fall or tilt. The magnetic sensor inside the stopper was fixed on the top of the cellulose sample and measured the change in the distance between the magnet and the sensor according to the movement of the magnet. In outdoor experiments, 11 cellulose samples were inserted into the wood detection system and the termite inflow was confirmed through the movement of the magnet without visiting the site within 5 to 17 days. When making further improvements to the function and operation of the system it in the future, it is possible to confirm that termites have invaded without visiting the site. Then it is also possible to reduce damage and fruiting due to product exposure, and which would improve the condition and appearance of cultural properties.

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR

  • ADE, P.A.R.;AKIBA, Y.;ANTHONY, A.E.;ARNOLD, K.;ATLAS, M.;BARRON, D.;BOETTGER, D.;BORRILL, J.;CHAPMAN, S.;CHINONE, Y.;DOBBS, M.;ELLEFLOT, T.;ERRARD, J.;FABBIAN, G.;FENG, C.;FLANIGAN, D.;GILBERT, A.;GRAINGER, W.;HALVERSON, N.W.;HASEGAWA, M.;HATTORI, K.;HAZUMI, M.;HOLZAPFEL, W.L.;HORI, Y.;HOWARD, J.;HYLAND, P.;INOUE, Y.;JAEHNIG, G.C.;JAFFE, A.H.;KEATING, B.;KERMISH, Z.;KESKITALO, R.;KISNER, T.;JEUNE, M. LE;LEE, A.T.;LEITCH, E.M.;LINDER, E.;LUNGU, M.;MATSUDA, F.;MATSUMURA, T.;MENG, X.;MILLER, N.J.;MORII, H.;MOYERMAN, S.;MYERS, M.J.;NAVAROLI, M.;NISHINO, H.;ORLANDO, A.;PAAR, H.;PELOTON, J.;POLETTI, D.;QUEALY, E.;REBEIZ, G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.625-628
    • /
    • 2015
  • POLARBEAR is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic inflation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1.274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

A Study on Kiosk Satisfaction Level Improvement: Focusing on Kano, Timko, and PCSI Methodology (키오스크 소비자의 만족수준 연구: Kano, Timko, PCSI 방법론을 중심으로)

  • Choi, Jaehoon;Kim, Pansoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.4
    • /
    • pp.193-204
    • /
    • 2022
  • This study analyzed the degree of influence of measurement and improvement of customer satisfaction level targeting kiosk users. In modern times, due to the development of technology and the improvement of the online environment, the probability that simple labor tasks will disappear after 10 years is close to 90%. Even in domestic research, it is predicted that 'simple labor jobs' will disappear due to the influence of advanced technology with a probability of about 36%. there is. In particular, as the demand for non-face-to-face services increases due to the Corona 19 virus, which is recently spreading globally, the trend of introducing kiosks has accelerated, and the global market will grow to 83.5 billion won in 2021, showing an average annual growth rate of 8.9%. there is. However, due to the unmanned nature of these kiosks, some consumers still have difficulties in using them, and consumers who are not familiar with the use of these technologies have a negative attitude towards service co-producers due to rejection of non-face-to-face services and anxiety about service errors. Lack of understanding leads to role conflicts between sales clerks and consumers, or inequality is being created in terms of service provision and generations accustomed to using technology. In addition, since kiosk is a representative technology-based self-service industry, if the user feels uncomfortable or requires additional labor, the overall service value decreases and the growth of the kiosk industry itself can be suppressed. It is important. Therefore, interviews were conducted on the main points of direct use with actual users centered on display color scheme, text size, device design, device size, internal UI (interface), amount of information, recognition sensor (barcode, NFC, etc.), Display brightness, self-event, and reaction speed items were extracted. Afterwards, using the questionnaire, the Kano model quality attribute classification of each expected evaluation item was carried out, and Timko's customer satisfaction coefficient, which can be calculated with accurate numerical values The PCSI Index analysis was additionally performed to determine the improvement priorities by finally classifying the improvement impact of the kiosk expected evaluation items through research. As a result, the impact of improvement appears in the order of internal UI (interface), text size, recognition sensor (barcode, NFC, etc.), reaction speed, self-event, display brightness, amount of information, device size, device design, and display color scheme. Through this, we intend to contribute to a comprehensive comparison of kiosk-based research in each field and to set the direction for improvement in the venture industry.