• Title/Summary/Keyword: Advanced Power Reactor

Search Result 416, Processing Time 0.04 seconds

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images (CCD와 적외선 열영상의 다중영상을 이용한 월성원자력발전소의 칼란드리아 전면부 점검)

  • Cho, Jai-Wan;Choi, Young-Soo;Kim, Chang-Hoi;Seo, Yong-Chil;Kim, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.711-714
    • /
    • 2002
  • Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and. resolution. To compensate the poor Image quality problems associated with the thermal infrared camera, the technique of superimposing thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and cod camera In parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  • PDF

VIBRATION AND STRESS ANALYSIS OF A UGS ASSEMBLY FOR THE APR1400 RVI CVAP

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.817-824
    • /
    • 2012
  • The most important component of a nuclear power plant is its nuclear reactor. Studies on the integrity of reactors have become an important part regarding the safety of a nuclear power plant. The US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20 presents a Comprehensive Vibration Assessment Program (CVAP) to be used to verify the structural integrity of the Reactor Vessel Internals (RVI) for flow-induced vibration prior to commercial operation. However, there are few published studies related to the RVI CVAP. We classified the Advanced Power Reactor 1400 (APR1400) RVI CVAP as a non-prototype category-2 reactor as part of an independent validation of its design. The aim of this paper is to present the results of structural response analyses of the Upper Guide Structure (UGS) assembly of the APR1400 reactor. These results show that the UGS and the Inner Barrel Assembly (IBA) meet the specified integrity levels of the design acceptance criteria. The vibration and stress analysis results in this paper will be used as basic information to select measurement locations of the vibration and stress for the APR1400 RVI CVAP.

Design and evaluation of an innovative LWR fuel combined dual-cooled annular geometry and SiC cladding materials

  • Deng, Yangbin;Liu, Minghao;Qiu, Bowen;Yin, Yuan;Gong, Xing;Huang, Xi;Pang, Bo;Li, Yongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.178-187
    • /
    • 2021
  • Dual-cooled annular fuel allows a significant increase in power density while maintaining or improving safety margins. However, the dual-cooled design brings much higher Zircaloy charge in reactor core, which could cause a great threaten of hydrogen explosion during severe accidents. Hence, an innovative fuel combined dual-cooled annular geometry and SiC cladding was proposed for the first time in this study. Capabilities of fuel design and behavior simulation were developed for this new fuel by the upgrade of FROBA-ANNULAR code. Considering characteristics of both SiC cladding and dual-cooled annular geometry, the basic fuel design was proposed and preliminary proved to be feasible. After that, a design optimization study was conducted, and the optimal values of as-fabricated plenum pressure and gas gap sizes were obtained. Finally, the performance simulation of the new fuel was carried out with the full consideration of realistic operation conditions. Results indicate that in addition to possessing advantages of both dual-cooled annular fuel and accident tolerant cladding at the same time, this innovative fuel could overcome the brittle failure issue of SiC induced by pellet-cladding interaction.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

Flow blockage analysis for fuel assembly in a lead-based fast reactor

  • Wang, Chenglong;Wu, Di;Gui, Minyang;Cai, Rong;Zhu, Dahuan;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3217-3228
    • /
    • 2021
  • Flow blockage of the fuel assembly in the lead-based fast reactor (LFR) may produce critical local spots, which will result in cladding failure and threaten reactor safety. In this study, the flow blockage characteristics were analyzed with the sub-channel analysis method, and the circumferentially-varied method was employed for considering the non-uniform distribution of circumferential temperature. The developed sub-channel analysis code SACOS-PB was validated by a heat transfer experiment in a blocked 19-rod bundle cooled by lead-bismuth eutectic. The deviations between the predicted coolant temperature and experimental values are within ±5%, including small and large flow blockage scenarios. And the temperature distributions of the fuel rod could be better simulated by the circumferentially-varied method for the small blockage scenario. Based on the validated code, the analysis of blockage characteristics was conducted. It could be seen from the temperature and flow distributions that a large blockage accident is more destructive compared with a small one. The sensitivity analysis shows that the closer the blockage location is to the exit, the more dangerous the accident is. Similarly, a larger blockage length will lead to a more serious case. And a higher exit temperature will be generated resulting from a higher peak coolant temperature of the blocked region. This work could provide a reference for the future design and development of the LFR.

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

VINUS: A neutron transport solver based on the variational nodal method for reactor core analysis

  • Zhulun Li;Xubo Ma;Longxiao Ma;Teng Zhang;Zhirui Du
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4195-4206
    • /
    • 2024
  • Compared to traditional transverse integration methods, the variational nodal method, with its unique advantages, is more suitable for high-fidelity calculations of reactor physics in reactors with complex geometries and finer detail descriptions. In this study, the basic theory of the variational nodal method was derived and the VINUS code is developed. The neutron solver based on this method is adaptable to various geometric models, and showcased the code's fundamental framework. On this basis, a set of self-designed macroscopic cross-section benchmarks, actual macroscopic cross-section benchmark VVER-440, and few-group microscopic cross-section benchmark RBEC-M for fast spectrum reactors were used to verify different functionalities of VINUS. The results were shown that VINUS code maintains good computational accuracy and convergence trends. For the VVER-440 benchmarks, the deviation of keff of VINUS from reference is less than 100 pcm, and the maximum power deviation is less than 4 %. For the RBEC-M, the deviation of keff is 125 pcm, and the maximum power deviation is less than 5 %. These outcomes collectively demonstrate the solver's potential for engineering applications in future advanced reactor designs.