• Title/Summary/Keyword: Advanced Manufacturing System

Search Result 519, Processing Time 0.031 seconds

Investigation of Cutting Characteristics of Linear Hotwire Cutting System and Bonding Characteristics of Expandable Polystyrene Foam for Variable Lamination Manufacturing(VLM) Process (가변 적층 쾌속 조형 공저 개발을 위한 발포 폴리스티렌폼의 선형 열선 절단시스템 절단 특성 및 접착강도 특성에 대한 연구)

  • Ahn, Dong-Gyu;Lee, Sang-Ho;Yang, Dong-Yol;Shin, Bo-Sung;Lee, Yong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.185-194
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain of RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S), and to investigate characteristics of part material, cutting characteristics by using linear hotwire cutting system and bonding. Experiments were carried out to investigate mechanical properties of part material such as anisotropy and directional tensile strength. In order to obtain optimal dimensional accuracy, surface roughness, and reduced cutting time, addition experiments were performed to find the relationship between cutting speed and cutting offset of hotwire, and heat generation of hotwire per unit length. So, adhesion strength tests according to ASTM test procedure showed that delamination did not occur at bonded area. Based on the data, a clover-shape was fabricated using unit shape part(USP) it is generated hotwire cutting. The results of present study have been reflected on the enhancement of the VLM-S process and apparatus.

  • PDF

Bare Glass Inspection System using Line Scan Camera

  • Baek, Gyeoung-Hun;Cho, Seog-Bin;Jung, Sung-Yoon;Baek, Kwang-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1565-1567
    • /
    • 2004
  • Various defects are found in FPD (Flat Panel Display) manufacturing process. So detecting these defects early and reprocessing them is an important factor that reduces the cost of production. In this paper, the bare glass inspection system for the FPD which is the early process inspection system in the FPD manufacturing process is designed and implemented using the high performance and accuracy CCD line scan camera. For the preprocessing of the high speed line image data, the Image Processing Part (IPP) is designed and implemented using high performance DSP (Digital signal Processor), FIFO (First in First out), FPGA (Field Programmable Gate Array) and the Data Management and System Control part are implemented using ARM (Advanced RISC Machine) processor to control many IPP and cameras and to provide remote users with processed data. For evaluating implemented system, experiment environment which has an area camera for reviewing and moving shelf is made.

  • PDF

Global Stage of Reproducibility Experiment for Single Point Diamond Turning (초정밀 선삭가공을 위한 글로벌스테이지의 재현성 실험)

  • Park, Dae-Kwang;Kwak, Nam-Su;Kwon, Dae-Ju;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.982-988
    • /
    • 2013
  • With conventional positioning apparatus, it is very difficult to simultaneously achieve the desired driving range and precision at the sub-micrometer level. Generally, lead screw and friction drive, etc., have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

A Study on Characteristic Analysis of C-Plate Cover and Examination of Weak Parts (C-Plate 커버의 구조해석 및 취약부 규명)

  • 김옥구;송준엽;강재훈;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.373-377
    • /
    • 2003
  • Recently, advanced manufacturing systems with high speed and intelligence have been developed for the betterment of machining ability. In this case, reliability prediction work with motion characteristic evaluation of sliding cover(C-plate, Bellows, etc) has also important role from design procedure to manufacturing and assembly process. Accordingly in this study, H/W test-bed system for reliability evaluation of sliding cover has been developed to obtain proper reference data for design of new model, prevention trouble (failure mode), and improvement of quality and lift cycle extremely for advanced mother machinery.

  • PDF

Development of a Technology Cost Model for Advanced Manufacturing Systems (첨단생산시스템을 위한 기술원가모델의 개발)

  • Park, Ju-Chull
    • IE interfaces
    • /
    • v.8 no.1
    • /
    • pp.31-43
    • /
    • 1995
  • This study is intended to develop a technology cost model (TCM) which treats technology costs appropriately under present advanced manufacturing technology environment. TCM is composed of two elements : cost classification system and cost allocation model. It is proposed to include technology-related department expenses as well as technology investment in the categories of technology costs. For the cost allocation, technology activities are divided into four homogeneous groups. Costs are accumulated into one of the four cost pools and allocated to the cost object using the pool's unique allocation base. It is also proposed to use the capital recovery costs including interest expense rather than the depreciation costs for an invested capital. A case study is performed to verify the applicability of the developed model.

  • PDF

High Precision Path Generation of an LCD Glass-Handling Robot

  • Cho, Phil-Joo;Kim, Hyo-Gyu;Kim, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2311-2318
    • /
    • 2005
  • Progress in the LCD industries has been very rapid. Therefore, their manufacturing lines require larger LCD glass-handling robots and more precise path control of the robots. In this paper, we present two practical advanced algorithms for high-precision path generation of an LCD glass-handling robot. One is high-precision path interpolation for continuous motion, which connects several single motions and is a reliable solution for a short robot cycle time. We demonstrate that the proposed algorithm can reduce path error by approximately 91% compared with existing algorithms without increasing cycle time. The second is real-time static deflection compensation, which can optimally compensate the static deflection of the handling robot without any additional sensors, measurement instruments or mechanical axes. This reduces vertical path error to approximately 60% of the existing system error. All of these algorithms have been commercialized and applied to a seventh-generation LCD glass-handling robot.

  • PDF

Development of Prototyping and Die/Mold Manufacturing Technology using Rapid Prototyping(SLA) (쾌속 3차원 조형법을 이용한 시작기술 및 시작금형)

  • Park, K.;Lee, S.C.;Jung, J.H.;Yang, D.Y.;Yoon, J.R.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1582-1589
    • /
    • 1996
  • Rapid prototyping is a new prototyping technology which produces three dimensional part models directrly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Appaaratus(SLA) which is the most widely-used rapid prototyping system is introduced to achieve die/mold technology innovation. For the purpose, the prototyping technology using SLA is developed such that patterns of which shapes are quite complicated are successfully produced with high accuracy. Using these patterns, prototype die/molds are efficientrly manufactured; a turbocharger rotor, a fan and a wheel patterns, prototype die/molds are efficienterly manufactured ; a turbochager rotor, a fan and a wheel pattern are made, and the molds of the investment casting, the injection molding and the die casting are manufactured respectively. The casting products are produced using these molds and it turns out that these methods are quitre effective for manufacturing products of complicated geometry from the viewpoint of efficiency and productivity.

Dynamometer Test Procedure of Metal Brake Pad for Part 25 Aircraft (수송류 항공기용 금속계 제동패드의 다이나모시험 절차)

  • Min-ji Kim;Kyung-il Kim;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.821-827
    • /
    • 2023
  • In this study, the aircraft technical standards of the Korea and the United States were analyzed to derive the dynamometer test procedure required to prove the compatibility for flight test certification of the metal brake pad for transport aircraft. Since the design modification of the brake systems is classified as a major change, the STC(Supplemental Type Certificate) and the PMA(Parts Manufacturer Approval) are required. In accordance with the TSO-C135a, the technical standard order for brake system in the United States, the design landing-stop test, accelerate-stop test, and most severe landing stop test were selected among the test items for flight test. The conditions for the dynamometer test are determined according to the specifications provided by aircraft manufacturer, and the brake pad condition, deceleration, and the number of test are defined according to the TSO-C135a.

A Study on Application of Systems Engineering Approach to Design of Smart Manufacturing Execution System (스마트 제조 실행 시스템 기본설계를 위한 시스템 엔지니어링 적용 방법에 대한 연구)

  • Jeon, Byeong-woo;Shin, Kee-Young;Hong, Dae-Geun;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.95-105
    • /
    • 2015
  • Manufacturing Execution System(MES) is in charge of manufacturing execution in the shop floor based on the inputs given by high level information such as ERP, etc. The typical MES implemented is not tightly interconnected with shop floor control system including real (or near real) time monitoring and control devices such as PLC. The lack of real-time interfaces is one of the major obstacles to achieve accurate and optimization of the total performance index of the shop floor system. Smart factory system in the paradigm of Industry 4.0 tries to solve the problems via CPS (Cyber Physical System) technology and FILS (Factory In-the-Loop System). In this paper, we conducted Systems Engineering Approach to design an advanced MES (namely Smart MES) that can accommodate CPS and FILS concept. Specifically, we tailored Systems Engineering Process (SEP) based on an International Standard formalized as ISO/IEC 15288 to develop Stakeholders' Requirements (StR), System Requirements (SyR). The deliverables of each process are modeled and represented by the SysML, UML customized to Systems Engineering. The results of the research can provide a conceptual framework for future MES that can play a crucial role in the Smart Factory.

Order Promising Rolling Planning with ATP/CTP Reallocation Mechanism

  • Chen, Juin-Han;Lin, James T.;Wu, Yi-Sheng
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Available-to-promise (ATP) exhibiting availability of manufacturing resources can be used to support customer order promising. Recently, one advanced function called Capable-to-promise (CTP) is provided by several modern APS (advanced planning system) that checks available capacity for placing new production orders or increasing already scheduled production orders. At the customer enquiry stage while considering the order delivery date and quantity to quote, both ATP and CTP are allocated to support order promising. In particular, current trends of mass customization and multi-side production chain derive several new constraints that should be considered when ATP/CTP allocation planning for order promising - such as customer's preference plants or material vendors, material compatibility, etc. Moreover, ATP/CTP allocation planning would be executed over a rolling time horizon. To utilize capacity and material manufacturing resource flexibly and fulfill more customer orders, ATP/CTP rolling planning should possess resource reallocation mechanism under the constraints of order quantities and delivery dates for all previous order promising. Therefore, to enhance order promising with reliability and flexibility to reallocate manufacturing resource, the ATP/CTP reallocation planning mechanism is needed in order to reallocate material and capacity resource for fulfilling all previous promised and new customer orders beneficially with considering new derived material and capacity constraints.