• 제목/요약/키워드: Advanced Ferritic Steel

검색결과 40건 처리시간 0.024초

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation

  • Kim, Sung Jin;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.209-225
    • /
    • 2017
  • Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.

저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향 (Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l))

  • 김동현;윤한기;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel

  • Wang, Chenchong;Zhang, Chi;Yang, Zhigang;Zhao, Jijun
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.569-575
    • /
    • 2017
  • One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.

머플러 부품의 경량화를 위한 STS강판의 TWB 용접 (I) - STS강판의 레이저 맞대기 용접특성 - (Tailored Blank Welding of Stainless Steel to Make Lightweight Design Muffler (I) - Laser Butt Welding Characteristic of Stainless Steel Sheet -)

  • 김용;박평원;박기영;이경돈;김석진
    • 한국레이저가공학회지
    • /
    • 제17권2호
    • /
    • pp.11-18
    • /
    • 2014
  • This research was conducted as a fundamental study to apply tailored blank welding technique into automotive production process. Specially we tried to apply the TWB technique to exhaust system. The materials used in this work were ferritic 439 stainless steel sheet with a thickness of 1.2mm and 0.8mm. Welding tests were conducted for BOP test and dissimilar thickness (0.8 to 1.2t) cases. Major process parameters were position of focus, travel speed, shielding gas and joint (gap) condition. As a result, there are nothing significant welding characteristic compare with TWB of carbon steel. Stainless steel shows the good weldability and mechanical properties (tensile, hardness and forming strength) also shows high level. Just problem is gap condition. However, also in this case, it shows not only good forming strength but also base metal fracture after tensile test. And to conclude, it is good opportunity to make lightweight design muffler using TB welding technique.

  • PDF

핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성 (PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels)

  • 이진종;문준오;이창훈;박준영;이태호;홍현욱;조경목
    • Journal of Welding and Joining
    • /
    • 제34권6호
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.

Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment

  • Zhu, Sinan;Zhang, Chi;Yang, Zhigang;Wang, Chenchong
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1748-1751
    • /
    • 2017
  • Reduced activation ferritic/martensitic (RAFM) steels are widely applied as structural materials in the nuclear industry. To investigate hydrogen's effect on RAFM steels' elastic properties and the mechanism of that effect, a procedure of first principles simulation combined with experiment was designed. Density functional theory models were established to simulate RAFM steels' elastic status before and after hydrogen's insertion. Also, experiment was designed to measure the Young's modulus of RAFM steel samples with and without hydrogen charging. Both simulation and experiment showed that the solubility of hydrogen in RAFM steels would decrease the Young's modulus. The effect of hydrogen on RAFM steels' Young's modulus was more significant in water-quenched steels than it was in tempering steels. This indicated that defects inside martensite, considered to be hydrogen traps, could decrease the cohesive energy of the matrix and lead to a decrease of the Young's modulus after hydrogen insertion.

Microstructure and Tensile Properties of SS400 Carbon Steel and SUS430 Stainless Steel Butt Joint by Gas Metal Arc Welding

  • Poonnayom, Pramote;Chantasri, Sakchai;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The application of SS400 carbon steel and AISI430 ferritic stainless steel joint has been increased in industries because of the advantage of both metals was able to increase the service lifetime of the important structures. Therefore, a fusion welding process that could produce a sound weld and good joint properties should be optimized. This research is aimed to weld a butt joint of SS400 carbon steel and AISI430 ferritic stainless steel using Gas Metal Arc Welding (GMAW) welding process and to study the effects of welding parameters on joint properties. The experimental results were concluded as follows. The optimized welding parameter that produced the tensile strength of 448 MPa was the welding current of 110A, the welding speed of 400 mm/min and the mixed gas of $80%Ar+20%CO_2$. Increase of the welding current affected to increase and decrease the tensile strength of the joint, respectively. Lower welding current produced the incomplete bonding of the metals and indicated the low tensile strength. Microstructure investigation of the welded joint showed a columnar grain in the weld metal and a coarse grain in the heat affected zone (HAZ). The unknown hard precipitated phases were also found at the grain boundaries of the weld metal and HAZ. The hardness profile did not show the difference of the hardness on the joint that was welded by various welding currents but the hardness of the weld metal was higher than that of the other location.

WEAR BEHAVIOUR OF STEAM GENERATOR TUBES IN ROOM TEMPERATURE WATER

  • Lee, Young-Ho;Kim, Hyung-Kyu;Kim, In-Sup
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.203-204
    • /
    • 2002
  • The wear behaviour of steam generator (SG) tubes (Inconel 600 and 690) against support materials (405 and 409 ferritic stainless steels) has been experimentally studied in room temperature water using reciprocating wear apparatus with tube-an-plate configuration. The results showed that the wear rate of Inconel 690 was lower than that of lnconel 600 with increasing normal loads and sliding amplitudes. Also, plastic deformation layers appear below the surface of both SG tubes, which have a specific thickness and are small compared with their grain size. This means that wear rate of SG tubes in water condition is closely related to the formation and fracture of plastic deformation layers.

  • PDF

집합조직과 이랑형표면결함의 제어 및 결정립 미세화 수단으로서의 비대칭압연 (Asymmetric Rolling as Means of Texture and Ridging Control and Grain Refinement)

  • 이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.11-18
    • /
    • 2004
  • Asymmetric rolling, in which the circumferential velocities of the upper and lower rolls are different, can give rise to intense plastic shear strains and in turn shear deformation textures through the sheet thickness. The ideal shear deformation texture of fcc metals can be approximated by the <111> // ND and $\{001\}<110>$ orientations, among which the former improves the deep drawability. The ideal shear deformation texture for bcc metals can be approximated by the Goss $\{110\}<001>\;and\;\{112\}<111>$ orientations, among which the former improves the magnetic permeability along the <100> directions and is the prime orientation in grain oriented silicon steels. The intense shear strains can result in the grain refinement and hence improve mechanical properties. Steel sheets, especially ferritic stainless steel sheets, and aluminum alloy sheets may exhibit an undesirable surface roughening known as ridging or roping, when elongated along RD and TD, respectively. The ridging or roping is caused by differently oriented colonies, which are resulted from the <100> oriented columnar structure in ingots or billets, especially for ferritic stainless steels, that is not easily destroyed by the conventional rolling. The breakdown of columnar structure and the grain refinement can be achieved by asymmetric rolling, resulting in a decrease in the ridging problem.

  • PDF