• Title/Summary/Keyword: Adult stem cells

Search Result 192, Processing Time 0.023 seconds

Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells

  • Shin, Dong-Hyuk;Lee, Jeoung-Eun;Eum, Jin Hee;Chung, Young Gie;Lee, Hoon Taek;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2017
  • Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Differentiation of Human Adult Adipose Derived Stem Cell in vitro and Immunohistochemical Study of Adipose Derived Stem Cell after Intracerebral Transplantation in Rats

  • Ko, Kwang-Seok;Lee, Il-Woo;Joo, Won-Il;Lee, Kyung-Jun;Park, Hae-Kwan;Rha, Hyung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • Objective : Adipose tissue is derived from the embryonic mesoderm and contains a heterogenous stromal cell population. Authors have tried to verify the characteristics of stem cell of adipose derived stromal cells (ADSCs) and to investigate immunohistochemical findings after transplantation of ADSC into rat brain to evaluate survival, migration and differentiation of transplanted stromal cells. Methods : First ADSCs were isolated from human adipose tissue and induced adipose, osseous and neuronal differentiation under appropriate culture condition in vitro and examined phenotypes profile of human ADSCs in undifferentiated states using flow cytometry and immunohistochemical study. Human ADSCs were transplanted into the healthy rat brain to investigate survival, migration and differentiation after 4 weeks. Results : From human adipose tissue, adipose stem cells were harvested and subcultured for several times. The cultured ADSCs were differentiated into adipocytes, osteoctye and neuron-like cell under conditioned media. Flow cytometric analysis of undifferentiated ADSCs revealed that ADSCs were positive for CD29, CD44 and negative for CD34, CD45, CD117 and HLA-DR. Transplanted human ADSCs were found mainly in cortex adjacent to injection site and migrated from injection site at a distance of at least 1 mm along the cortex and corpus callosum. A few transplanted cells have differentiated into neuron and astrocyte. Conclusion : ADSCs were differentiated into multilineage cell lines through transdifferentiation. ADSCs were survived and migrated in xenograft without immunosuppression. Based on this data, ADSCs may be potential source of stem cells for many human disease including neurologic disorder.

Establishment of a Simple and Effective Method for Isolating Male Germline Stem Cells (GSCs) from Testicular Cells of Neonatal and Adult Mice

  • Kim Kye-Seong;Lim Jung-Jin;Yang Yun-Hee;Kim Soo-Kyoung;Yoon Tae-Ki;Cha Kwang-Yul;Lee Dong-Ryul
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1347-1354
    • /
    • 2006
  • The aims of this study were to establish a simple and effective method for isolating male germline stem cells (GSCs), and to test the possibility of using these cells as a new approach for male infertility treatment. Testes obtained from neonatal and adult mice were manually decapsulated. GSCs were collected from seminiferous tubules by a two-step enzyme digestion method and plated on gelatin-coated dishes. Over 5-7 days of culture, GSCs obtained from neonates and adults gave rise to large multicellular colonies that were subsequently grown for 10 passages. During in vitro proliferation, oct-4 and two immunological markers (Integrin ${\beta}1,\;{\alpha}6$) for GSCs were highly expressed in the cell colonies. During another culture period of 6 weeks to differentiate to later stage germ cells, the expression of oct-4 mRNA decreased in GSCs and Sertoli cells encapsulated with calcium alginate, but the expression of c-kit and testis-specific histone protein 2B(TH2B) mRNA as well as the localization of c-kit protein was increased. Expression of transition protein (TP-l) and localization of peanut agglutinin were not seen until 3 weeks after culturing, and appeared by 6 weeks of culture. The putative spermatids derived from GSCs supported embryonic development up to the blastocyst stage with normal chromosomal ploidy after chemical activation. Thus, GSCs isolated from neonatal and adult mouse testes were able to be maintained and proliferated in our simple culture conditions. These GSCs have the potential to differentiate into haploid germ cells during another long-term culture.

Comparative Analysis on Antioxidant Activity in Various Human Skin Fibroblasts and Mesenchymal Stem Cells (사람의 피부 섬유아세포 및 중간엽 줄기세포에서 항산화 활성의 반응에 대한 비교 분석)

  • Kong, Ji-Weon;Park, Ryeok;Park, Joon-Woo;Lee, Joo-Yeong;Choi, Yeon-Joo;Moon, Sun-Ha;Kim, Hyeon-Ji;Jeon, Byeong-Gyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.394-406
    • /
    • 2019
  • The cellular senescence may be due to damage by the reactive oxygen species (ROS). This study has compared the antioxidant activity in the human cell lines of various origins, including 10S and 50S-derived normal skin fibroblasts, and 10S bone marrow, dental tissue and adipose-derived adult stem cells. After being exposed to $H_2O_2$, half inhibitory concentration ($IC_{50}$) values by cytotoxicity assay was significantly (P<0.05) lower in 50S-derived skin fibroblasts, than in 10S-derived skin fibroblasts and various adult stem cell lines. The cell population doubling time (PDT) and the cell frequency with high senescence associated-${\beta}$-galactose activity were remarkably increased in 50S-derived fibroblasts exposed to 50 ppm $H_2O_2$ for 7 days, than those of 10S-derived fibroblasts and various adult stem cell lines. Further, the expression level of antioxidant-related genes, glutathione peroxidase (GPX) and catalase (CAT), was investigated in 10S and 50S-derived skin fibroblasts, and 10S-derived various adult stem cells by reverse transcription polymerase chain reaction (RT-PCR). The expression level of GPX was higher in most of cell lines, compared to CAT, and a significantly (P<0.05) higher expression level of GPX was observed in 10S-derived skin fibroblasts and adult stem cell lines, compared to 50S-derived skin fibroblasts. We concluded that old-aged skin fibroblasts seemed to be less resistant against ROS than young-aged skin fibroblasts and adult stem cells.

Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

  • Lee, Min Ju;Yoon, Tae Gyoon;Kang, Moonkyu;Kim, Hyun Jeong;Kang, Kyung Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.

Primary Cultures of Drosophila melanogaster Gut Cells for Studies of Intestinal Stem Cell Regulation (장줄기세포 조절 연구를 위한 초파리 장세포의 일차배양)

  • Yoon, Young-Il;Hwang, Jae-Sam;Goo, Tae-Won;Han, Myung-Sae;Ahn, Mi-Young;Yun, Eun-Young
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.621-626
    • /
    • 2012
  • $Drosophila$ $melanogaster$ has been used as a useful model to study development and disease. In this study, we established the primary culture method of $Drosophila$ in the intestine to understand how intestinal stem cells (ISCs) mediate tissue repair during infection and disease. To obtain intestinal cells, we separated intestines from adult flies and isolated single cells by enzymatic treatment. The survival of cultured cells was measured using MTS-analysis. The maximum growth rate of the cells was observed on the 9th day after seeding. In addition, the presence of ISCs and enteroendocrine cells was confirmed by delta and prospero staining. Accordingly, we supposed that $Drosophila$ $melanogaster$ gut cells established in this study are probably useful in studies about intestinal stem cell regulation and various diseases occurring in the intestine.

Stem Cell Based Strategies for the Treatment of Degenerative Retinal Diseases (망막변성질환에서의 줄기세포 기반치료)

  • Park, Jung-Hyun;Ku, Seung-Yup;Cho, Myung-Soo;Lee, Hak-Sup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • Stem-cell therapy has the potential to improve vision in patients with untreatable retinal disease. Various types of cell source including fetal, embryonic and adult stem cells, intrinsic and extrinsic factors for differentiation into retinal progenitors and transplantation mode were discussed in this review. Experimental approaches have successfully induced photoreceptor precursor cells and retinal pigment epithelium. Stem-cell-based therapy is a promising treatment to restore vision in patients with retinal disease, in spite of the challenges.

Proliferation, Apoptosis, and Telomerase Activity in Human Cord Blood CD34+ Cells Cultured with Combinations of Various Cytokines

  • Ahn, Myung-Ju;Lee, Hye-Sook;Jang, Mi-Yune;Choi, Jung-Hye;Lee, Young-Yeul;Park, Hyung-Bae;Lee, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.422-428
    • /
    • 2003
  • Umbilical cord blood (UCB), a rich source of hematopoietic stem/progenitor cells, has been proposed as an alternative to bone marrow and peripheral blood for transplantation treatment. Ex vivo expansion of cord blood stem cells could make the use of cord blood transplant feasible even for adult patients. However, the optimal cytokine cocktail for expansion of stem cells is yet to be established. This study compares proliferation, apoptosis, and telomerase activities in human cord blood stem cells cultured ex vivo with FLT3 ligand (FL)/thrombopoietin (TPO) or FL/TPO/stem cell factor (SCF), with a view to determine optimal combination of cytokines. CD34+ cells were cultured in DMEM containing either FL (50 ng/ml) and TPO (10 ng/ml) (FT group) or FL (50 ng/ml), TPO (10 ng/ml) and SCF (50 ng/ml) (FTS group). The cell proliferation rate was ten times higher in the FTS group. Although cells cultured with the two different combinations of cytokines were maintained for a long term (up to 8 weeks), a large number of cells underwent differentiation during this period. Cells cultured in FTS displayed lower levels of apoptosis compared to those of the FT group during the Initial 7 days of culture. The CD34+ fraction in both groups was markedly decreased to $21-30\%$ , and only $5-6\%$ was detected at 14 days of culture. Telomerase activity detected in human CD34+ cord blood at low levels was upregulated during the early phase of culture and decreased to baseline levels in the later phase. The telomerase activity of cord blood cultured in FT was lower than that of the FTS group. Our results suggest that, on adding stem cell factors to the FT cytokines, cultured CD34+ cord blood cells display a greater degree of cell proliferation and decreased apoptosis. However, during CD34+ cord blood cell culture, a Barge number of cells undergo differentiation, indicating that more potent novel cytokines or new culture conditioning methods should be developed to maintain their ability to engraft and sustain long-term hematopoiesis.

Chios gum mastic enhance the proliferation and odontogenic differentiation of human dental pulp stem cells

  • Hyun-Su Baek;Se-Jin Park;Eun-Gyung Lee;Yong-Il Kim;In-Ryoung Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.423-433
    • /
    • 2024
  • Dental pulp stem cells (DPSCs) are a type of adult stem cell present in the dental pulp tissue. They possess a higher proliferative capacity than bone marrow mesenchymal stem cells. Their ease of collection from patients makes them well-suited for tissue engineering applications, such as tooth and nerve regeneration. Chios gum mastic (CGM), a resin extracted from the stems and leaves of Pistacia lentiscus var. Chia, has garnered attention for its potential in tissue regeneration. This study aims to confirm alterations in cell proliferation rates and induce differentiation in human DPSCs (hDPSCs) through CGM treatment, a substance known for effectively promoting odontogenic differentiation. Administration of CGM to hDPSC cells was followed by an assessment of cell survival, proliferation, and odontogenic differentiation through protein and gene analysis. The study revealed that hDPSCs exhibited low sensitivity to CGM toxicity. CGM treatment induced cell proliferation by activating cell-cycle proteins through the Wnt/β-catenin pathway. Additionally, the study demonstrated that CGM enhances alkaline phosphatase activation by upregulating the expression of collagen type I, a representative matrix protein of dentin. This activation of markers associated with odontogenic and bone differentiation ultimately facilitated the mineralization of hDPSCs. This study concludes that CGM, as a natural substance, fosters the cell cycle and cell proliferation in hDPSCs. Furthermore, it triggers the transcription of odontogenic and osteogenic markers, thereby facilitating odontogenic differentiation.