• Title/Summary/Keyword: Adsorptive Stripping Voltammetry

Search Result 25, Processing Time 0.023 seconds

Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry

  • Attar, Tarik;Harek, Yahia;Larabi, Lahcen
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.568-573
    • /
    • 2013
  • A selective and sensitive method for simultaneous determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The procedure involves an adsorptive accumulation of Cu(II)-ETSC (4- ethyl-3-thiosemicarbazide) on a hanging mercury drop electrode, followed by a stripping voltammetry measurement of reduction current of adsorbed complex at about -715 mV. The optimum conditions for the analysis of copper (II) ion are : pH 10.3, concentration of 4-ethyl-3-thiosemicarbazide $3.25{\times}10^{-6}$ M and an accumulation potential of -100 mV. The peak current is proportional to the concentration of copper over the range 0.003-125 ng/mL with a detection limit of 0.001 ng/mL and an accumulation time of 60 s. Moreover, with the use of the proposed method, there is a considerable improvement in the detection limit, the linear dynamic range and the deposition time, compared with the methods of adsorptive stripping voltammetry for the determination of copper. The developed method was validated by analysis of whole blood certified reference materials.

Determination of Fluoroquinolone Antibacterial Agents by Square Wave Adsorptive Stripping Voltammetry (네모파 흡착 벗김 전압전류법에 의한 플루오로퀴놀론 계 항생제의 검출)

  • Boo, Han-Kil;Song, Youn-Joo;Park, Se-Jin;Chung, Taek-Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Electrochemical behavior of fluoroquinolone antibacterial agents on carbon paste electrode (CPE) were investigated by cyclic voltammetry and square wave adsorptive stripping voltammetry. The fluoroquinolone antibacterial agents tested in this study were Enrofloxacin (ENR), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL) and Levofloxacin (LEV). In acetate buffer at pH 4.5, the oxidation peak potentials of the fluoroquinolone antibacterial agents of ENR, NOR, CIP, OFL, and LEV were 0.952 V, 1.052 V, 1.055 V, 0.983 V, and 0.990 V (vs. Ag/AgCl), respectively. And their oxidation peak currents from square wave adsorptive stripping voltammograms are proportional to the concentration of each antibacterial agent over the range from $0.2\;{\mu}M$ to $1\;{\mu}M$.

Determination of Cyanide Ion by Adsorptive Stripping Voltammetry (흡착벗김 전압전류법에 의한 시안화이온의 정량)

  • Cha, Ki-Won;Ko, Su-Jin;Kim, Jea-Kyun
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.540-544
    • /
    • 2001
  • Determination of cyanide ion has been studied by adsorptive stripping voltammetry using hanging mercury electrode. Cyanide ion complexed with copper ion is adsorpbed on the electrode and oxidised at the positive potential scan. Optimal conditions of CN determination were found to be ; supporting electrolyte solution ; 0.1 M NaCl of ammonium buffer at pH 10, accumulation potential; -800 mV vs Ag/AgCl, accumulation time ; 300 s, scan rate ; 50mV/s. The linear concentration of cyanide ion was observed in the range $1{\times}10^{-8}$, $1{\times}10^{-7}M$. The detection limit(n/s=3) was $0.13{\mu}g/L$($5{\times}10^{-9}M$) with 3.5% RSD.

  • PDF

Determination of Vanadium with N-Benzoylphenylhydroxylamine by Adsorptive Stripping Voltammetry (N-Benzoylphenylhydroxylamine을 이용한 바나듐의 흡착벗김전압전류법적 정량)

  • Choi, Sung Yung;Choi, Won Hyung;Lee, Jin Sik;Lee, Sang Hoon;Lee, Yeong Sig
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.461-469
    • /
    • 1994
  • Trace vanadium was determined by Adsorptive stripping voltammetry with HMDE in PIPES buffer solution. N-Benzoylphenylhydroxylamine was used as a ligand. The calibration curve of vanadium was linear over the range of $10{\sim}70{\mu}g/L$ on accumulation potential of +0.15V and on accumulation time of 10 sec. The various metal ions did not interfere with the determination of vanadium(V) in this case.

  • PDF

Determination of Thioglycolic acid in the presence of Copper(II) by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 구리이온(II) 존재하에서 티오글리콜산의 정량)

  • Hong, Mi-Jeong;Kwon, Young-Sun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Determination method of trace thioglycolate has been studied by adsorptive stripping voltammetry. Copper(II)-thioglycolate complex is adsorbed at the hanging mercury drop electrode and stripped during cathodic scan. Electrolyte was used pH 6.5 phosphate and pH 9.5 borate buffer solutions. Optimal conditions were a copper(II) concentration $1{\times}10^{-4}M$, an adsorption accumulation potential -0.2V, an adsorption accumulation time 60 sec and a scan rate 20mV/sec. A detection limit of $1{\times}10^{-9}M$ thioglycolate was obtained. The method was applied to the determination of thioglycolate in cold wave fluids and depilating creams.

  • PDF

Determination of Uranium using 1-(2-Pyridylazo)-2-naphthol by Adsorptive Stripping Voltammetry (1-(2-Pyridylazo)-2-naphthol을 이용한 우라늄의 흡착벗김전압전류법적 정량)

  • Kim, Kyoung Tae;Choi, Won Hyung;Lee, Jin Sik;Choi, Sung Yung
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.285-292
    • /
    • 1995
  • Uranium has variable oxidation states(${UO_2}^{+2}$, $UO^{+2}$, $U^{+4}$, $U^{+3}$) and 1-(2-Pyridylazo)-2-naphthol forms a very stable chelate with Uranium(${UO_2}^{+2}$). The determination method of Uranium(${UO_2}^{+2}$) in 0.1M Borate buffer(pH 7.10) has been investigated by adsorptive stripping voltammetry. The optimum conditions were PAN concentration of $5{\times}10^{-7}M$, accumulation potential of 0.00V(vs. Ag/AgCl) and accumulation time of 120sec. The calibration curve was linear over the range of $5{\sim}60{\mu}g/L$ and the various metal ions did not interfere with the determination Uranium(${UO_2}^{+2}$) except Cu(II) and Co(II).

  • PDF

Stripping Voltammetric Determination of Osmium (벗김 전압전류법에 의한 오스뮴 정량)

  • Kwon, Young-Soon;Kim, So-Jin;Czae, Myung-Zoon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.114-118
    • /
    • 1997
  • A stripping voltammetric scheme for the determination of osmium, based on the adsorptive accumulation of osmium in the presence of hydroxylamine, was described. Cyclic voltammetry was used to characterize the redox and interfacial processes. Optimal experimental conditions were found to be a stirred 0.05M hydroxylamine hydrochloride solution(pH 1.8), accumulation at -0.65V for 60s, and a differential pulse mode with a scan rate of 10mV/s. The detection limit was $6.3{\times}10^{-8}M$(12ppb) with the optimal condition.

  • PDF

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.

Determination of Ultratraces of Rhodium by Adsorptive Stripping Voltammetry of Formaldehyde Complex

  • Hong Tae-Kee;Czae Myung-Zoon;Lee Chul;Kwon Young-Soon;Hong Mi-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1035-1037
    • /
    • 1994
  • An ultrasensitive and selective stripping voltammetric scheme for the determination of rhodium is described. By the use of combined accumulation and catalytic effects in formaldehyde-hydrochloric acid medium, substantial improvement in the limit of detection can be obtained. Optimal experimental conditions were found to be 0.42 M hydrochloric acid solution containing 0.008${\%}$ formaldehyde, an accumulation potential of -0.70 V (vs. Ag/AgCl) and an accumulation time of 20 s. The stripping mode was differential pulse voltammetry. In these conditions the limit of detection lies at 2 ${\times}$ l0$^{-12}$ M (0.21 ppt). The relative standard deviation at 5 ${\times}$ l0$^{-11}$ M was 4.9${\%}$ (n=5). There were no serious interferences from other platinum group metal ions being the tolerable amounts more than 500 times that of rhodium.

Adsorptive Stripping Voltammetrical Determination of Zirconium (흡착벗김 전압전류법적 지르코늄의 정량)

  • Choi, Won Hyung;Lee, Jin Sik;Kim, Do Hoon;Kim, Jong Cheol
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.425-433
    • /
    • 1993
  • Adsorptive stripping voltammetric determination method of trace zirconium using oxine as a ligand was studied. Optimal conditions found to be $2.5{\times}10^{-3}M$ borax buffer solution(pH 8.5) containing oxine concentration of $4{\times}10^{-8}M$. Accumulation potential was -0.2V, accumulation time was 400sec and scan rate was 4mV/sec. Calibration plots for zirconium are linear over the range of $1{\sim}100{\mu}g/L$ in optimal condition.

  • PDF