DOI QR코드

DOI QR Code

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M. (Chemistry Department of Faculty of Science, South Valley University)
  • Published : 2004.02.01

Abstract

Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.

Keywords

References

  1. S. Raheem and K. M. M. K. Prasad, Talanta, 40, 1809 (1993) https://doi.org/10.1016/0039-9140(93)80100-6
  2. K. M. M. K. Prasad and S. Raheem, Microchim. Acta, 112, 63 (1993) https://doi.org/10.1007/BF01243322
  3. J. R. Kramer, J. Gleed and K. Gracey, Anal. Chim. Acta, 284, 599 (1994) https://doi.org/10.1016/0003-2670(94)85065-8
  4. K. M. M. K. Prasad, P. Vijayalekshmi and C. K. Sastri, Analyst, 119, 2817 (1994) https://doi.org/10.1039/an9941902817
  5. W. D. Wakley and L. P. Varga, Anal. Chern., 44, 169 (1972) https://doi.org/10.1021/ac60309a023
  6. J. Kobayashi, M. Baba and M. Miyazaki, Anal. Sci., 10, 287 (1994) https://doi.org/10.2116/analsci.10.287
  7. B. Fairman, A. Sanzmedel, M. Gallego, M. J. Quintela, P. Jones and R. Benson, Anal. Chim. Acta, 286, 481 (1994)
  8. D. J. Hawke and H. K. J. Powell, Anal. Chim. Acta, 299, 257 (1994) https://doi.org/10.1016/0003-2670(94)00335-1
  9. L. F. Capitianvallvey, M. C. Valencia and G. Miron, Anal. Chim. Acta, 289, 365 (1994) https://doi.org/10.1016/0003-2670(94)90013-Z
  10. D. V. Vukomanovic and G. W. Vanloon, Fresnius, J. Anal. Chem., 350, 352 (1994) https://doi.org/10.1007/BF00325604
  11. R. B. Zhn, J. L. Han and H. Y. Chen, Chem. J. Chinese Univ.-Chin., 16, 35 (1995)
  12. R. Abdel-Hamid, J. Chem. Soc. Perkin Trans. 2, 691(1996)
  13. H. M. EI-Sagher, Monatschefte fur Chemie, 130, 295 (1999)
  14. R. Abdel-Hamid, H. M. EI-Sagheir and M. K. Rabia, Can. J. Chem., 75, 162 (1997)
  15. J. C. K. Placers, M. T. S. Alacjos and F. J. G. Montelonge, Talanta, 39, 649 (1992) https://doi.org/10.1016/0039-9140(92)80075-O
  16. D. V. Vukomanovic, J. A. Page and G. W. Vanloon, Can. J. Chern., 69, 1418 (1991) https://doi.org/10.1139/v91-210
  17. D. V. vukomanovic and G. W. Vanloon, Talanta, 41, 387 (1994) https://doi.org/10.1016/0039-9140(94)80143-6
  18. Jr. D. K. Gosser 'Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanism', VCH, New York, (1993)
  19. B. H. Wopschall and I. Shain, Anal. Chem., 39, 1514 (1967) https://doi.org/10.1021/ac50156a018
  20. B. H. Wopschall and I. Shain, Anal. Chem., 39, 1534 (1967)
  21. E. Laviron, Electroanal. Chem., 12, 53 (1982)
  22. A. J. Bard and L. R. Faulkner, 'lectrochemical Methods, undamentals and Applications' Wiley, New York, (1980)
  23. B. Janik and P. J. Elving, J. Electrochem. Soc., 116, 1089(1965)
  24. M. P. Soriage and A. T. Hubbard, J. Am. Chem. Soc., 104, 3937 (1982) https://doi.org/10.1021/ja00378a026
  25. F. C. Anson, Anal. Chem., 38, 54 (1966) https://doi.org/10.1021/ac60233a014
  26. K. Ogura and K. Arinoba, J. Electroanal. Chem., 89, 175 (1978) https://doi.org/10.1016/S0022-0728(78)80042-4
  27. K. Ogura, K. Seneo, S. Murakami and T. Yoshino, J. Inorg. Nucl. Chem, 42, 1165 (1980) https://doi.org/10.1016/0022-1902(80)80430-1
  28. K. Ogura, Y. Fushima and I. Aomizu, J. Electroanal. Chem., 107, 271 (1980) https://doi.org/10.1016/S0022-0728(80)80200-2
  29. M. Jarosz, Analyst, 111, 681(1986) https://doi.org/10.1039/an9861100681
  30. D. D. Perrin, Ed., 'Stability constants of metal ion complexes'. Part B. Organic Ligands. IUPAC Chemical Data Series, No. 22. Pergamon Press Ltd: 1979

Cited by

  1. Poly (phenazine 2,3-diimino(pyrrole-2-yl)) as Redox Stimulated Actuator Material for Selected Organic Dyes vol.164, pp.14, 2017, https://doi.org/10.1149/2.0141802jes
  2. Stripping voltammetric detection of thorium on the oxine modified carbon paste electrode vol.304, pp.2, 2015, https://doi.org/10.1007/s10967-014-3837-z