• Title/Summary/Keyword: Adsorption model

Search Result 898, Processing Time 0.03 seconds

Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

  • Tahermansouri, Hasan;Beheshti, Marzieh
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3391-3398
    • /
    • 2013
  • The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

Changes of Electrical Properties of Graphene upon Introduction of Structural Defects and Gas Exposure

  • Kim, Kang-Hyun;Kang, Hae-Yong;Lee, Jae-Woo;Lee, Nam-Hee;Woo, Byung-Chill;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.474-474
    • /
    • 2011
  • Graphene is considered as a potential candidate for the key material in the ideal 2D nanoelectronics. Recently, it is reported that graphene has an interesting sensitivity to molecular adsorption on it. Such properties are believed to be enhanced by the existence of disorders and ripples inside graphene as well as by the interaction with the substrate underneath. Here, we report the effect of introducing structural disorders to the graphene on its electrical properties such as conductance, transconductance, low frequency noise, which can be successfully described by a simple model of the continuum percolation. In addition, the response of the graphene device to gaseous molecular adsorption was systematically investigated and the results were discussed along with the change in Raman spectra.

  • PDF

Characteristics of Heavy Metal Biosorption by Pseudomonas cepacia KH410 (Pseudomonas cepacia KH410의 중금속 흡착특성)

  • 박지원;김영희
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • An ubiquitous bacterium, Pseudomonar cepacia KH410 was isolated from fresh water plant root and identified. Adsorption of heavy metals of lead, cadmium and copper by this strain was investigated. Optimal conditions foradsorption was 1.0 dry g-biomass, at pH 4.0 and temperature of $40^{\circ}C$. Adsorption equilibrium reached max-imum after 120 min in 1000 mg/l metal solutions. The adsorption capacity (K) of lead was 5.6 times higher thancadmium and 4.0 times higher than that of copper. Adsorption of lead was applicable for Langmuir modelwhereas Freundlich model for cadmium and copper, respectively. Adsorption strength (1/n) of heavy metal ionswere in the order of lead>copper>cadmium. Uptake capacity of lead, cadmium and copper by dried cell was83.2,42.0,65.2 mg/g-biomass, respectively. Effective desorption was induced 0.1 M HCI for lead and 0.1 $HNO_3$ for cadmium and copper. Pretreatment to increase ion strength was the most effective with 0.1 M KOH.Uptake by immobilized cell was 77.8,58.5,71.2 mg/g-biomass for lead, cadmium and copper, respectively. Theimmobilized cell was more effective than ion exchange resin on removal of heavy metals in solution containinglight metals.

  • PDF

Leaching and Adsorption of Flupyrazofos(KH-502) in the Soil (Flupyrazofos(KH-502)의 토양 중 용탈 및 흡착)

  • Yang, Jae-E;Cho, Boo-Yeon;You, Kyoung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.72-79
    • /
    • 1997
  • Adsorption, leaching, and retention of the Flupyrazofos(KH-502), a new active ingredient for insecticide, in the soils under laborarory and field conditions were investigated to provide the basic data for the safety use and to assess a secondary impact of this insecticide on soil and water environments. A significant power function relation was found between the adsorbed KH-502 and time, representing that 45% of the added KH-502 was adsorbed within 30 min. but a quasiequilibrium was reached after 6 to 12 hr with a slower adsorption. Adsorption phenomena followed th first-order kinetics and time required for 50% adsorption was 5.8 hr. The equilibrium adsorption isotherm was explained by the Freundlich equation and was classified as S-type. The amounts of KH-502 leached through the soil column (C) as compared to initial conc. ($C_0$) were very low and these relative concentrations ($C/C_0$) were 0.073 and 0.017 in SL and CL soils, respectively. The residual conc. of KH-502 in the surface soil was comparatively low and decreased with time. Half-lives of KH-502 in the surface soil was comparatively low and decreased with time. Half-lives of KH-502 under the field conditions were estimated to be 20 and 18 days in the SL and CL soils, respectively. The KH-502 cone, transported to the subsurface soils was extremely low. These results demonstrate that KH-502 has a low pollution risk potential to the surrounding environment as far as it is used following the recommended guideline.

  • PDF

Adsorption Property of Shrimp Shell Chitosan to Water Soluble Proteins (수용성 단백질에 대한 새우껍질 Chitosan의 흡착 특성)

  • LEE Keun-Tai;PARK Seong-Min;CHOI Hyeon-Mee;CHOI Sang-Hyun;MOON Bo-In;KIM Kyung-Tae;SONG Ho-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.473-477
    • /
    • 2001
  • Chitosan has been used as an effective adsorbant for the treatment of wastewater from seafood processing. We investigated the effects of deacetylation degree (DD) and molecular weight (MW) of chitosan on protein adsorption ability and also the optimum conditions of chitosan treatment for protein adsorption in 3 kinds of protein (albumin, hemoglobin and albumin-myoglobin mixture) solutions. The higher deacetylation degree and the lower molecular weight chitosan, the higher adsorption for water soluble proteins was accomplished. The optimum pHs for adsorption of albumin, hemoglobin and albumin-myoglobin mixture (4: 1, w/w) were 4.0, 7.0 and 4.0 respectively and the optimum time was $3\~4$ hrs for all proteins. Sodium chloride in the model system of protein solution was a preventing factor for protein adsorption ability of chitosan (DD=$80\%$, MW=350 kDa).

  • PDF

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater (철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술)

  • Yoon, Ji-Young;Ko, Kyung-Seok;Yu, Yong-Jae;Chon, Chul-Min;Kim, Gyoo-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.589-601
    • /
    • 2010
  • Recently it has been frequently reported arsenic contamination of geologic origin in groundwater. The iron-impregnated ranular activated carbon (Fe-GAC) was developed for effective removal of arsenic from groundwater n the study. Fe-GACs were prepared by impregnating iron compounds into a supporting medium (GAC) with 0.05 M iron nitrate solution. The materials were used in arsenic adsorption isotherm tests to know the effect of iron impregnation time, batch kinetic tests to understand the influence of pH, and column tests to evaluate for the preliminary operation of water treatment system. The results showed that the minimum twelve hours of impregnation time were required for making the Fe-GAC with sufficient iron content for arsenic removal, confirmed by a high arsenic adsorption capacity evaluated in the isotherm tests. Most of the impregnated iron compounds were iron hydroxynitrate $Fe_4(OH)_{11}NO_3{\cdot}2H_2O$ but a mall quantity of hematite was also identified in X-ray diffraction(XRD) analysis. The batch isotherms of Fe-GAC for arsenic adsorption were well explained by Langmuir than Freundlich model and the iron contents of Fe-GAC have positive linear correlations on logarithmic plots with Freundlich distribution coefficients ($K_F$ and Langmuir maximum adsorption capacities ($Q_m$. The results of kinetic experiments suggested hat Fe-GAC had he excellent arsenic adsorption capacities regardless of all pH conditions except for pH 11 and could be used a promising adsorbents for groundwater arsenic removal considering the general groundwater pH range of 6-8. The pseudo-second order model, based on the assumption that the ate-limiting step might be chemisorption, provided the best correlation of the kinetic experimental data and explained the arsenic adsorption system f Fe-GAC. The column test was conducted to valuate the feasibility of Fe-GAC use and the operation parameters in arsenic groundwater treatment system. The parameters obtained from the column test were the retardation actor of 482.4 and the distribution coefficient of 581.1 L/mg which were similar values of 511.5-592.5 L/mg acquired from Freundlich batch isotherm model. The results of this study suggested that Fe-GAC could be used as promising adsorbent of arsenic removal in a small groundwater supply system with water treatment facility.

Removal of Heavy Metals from Aqueous Solution by a Column Packed with Peat-Humin (Peat-Humin 충전 칼럼을 이용한 수용액 중의 중금속 제거)

  • Shin, Hyun-Snag;Lee, Chang-Hoon;Lee, Yo-Snag;Kang, Ki-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.535-541
    • /
    • 2005
  • Peat humin(p-Humin) extracted from Canadian Sphagnum peat moss was packed in a column and removal of heavy metal ions such as Cd, Cu and Pb from aqueous solution under flow conditions was studied. The metal ions were removed not only from single-element solutions but also from a multi-metal solution. Column kinetics for metal removal were described by the Thomas model. For single-component metal solutions, the maximum adsorption capacities of the p-Humin for Pb, Cu and Cd were 138.8, 44.66 and 41.61 mg/g, respectively. The results of multi-component competitive adsorption showed that adsorption affinity was in the order of Pb $\gg$ Cu > Cd. The adsorbed metal ions were easily deserted from the p-Humin with 0.05 N $HNO_3$ solution. It is apparent that 95% of the heavy metal ions were recovered from the saturated column. This investigation provides possibility to clean up heavy-metal contaminated waste waters by using the natural biomass, p-Humin as an environmentally friendly and cost-effective new biosorbents.

A Study of Physicochemical Characteristics and Adsorption properties of Cs and Sr of Natural Zeolite from Kuryongpo in Korea (한국 구룡포산 천연 제올라이트의 이화학적 특성 및 Cs과 Sr 흡착 특성 연구)

  • Bayarsaikhan Battsetseg;Hu Sik Kim;Hyeon Uk Choo;Jong Sam Park;Woo Taik Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.117-124
    • /
    • 2023
  • X-ray diffraction analysis, X-ray fluorescence analysis, thermal differential and thermos gravimetric analysis, cation exchange capacity analysis, and Cesium (Cs), Strontium (Sr) adsorption experiments were performed to investigate the physical and chemical properties of natural zeolite from Guryongpo in Korea. As a result of X-ray diffraction analysis, minerals such as mordenite, heulandite, clinoptilolite, and illite are contained, and as a result of X-ray fluorescence analysis, elements such as SiO2, Al2O3, CaO, K2O, MgO, Fe2O3 and Na2O are contained, and the cation exchange capacity was 148.6 meq/100 g. As a result of thermal differential and thermos gravimetric analysis, it was confirmed that the thermal stability was excellent up to 600 ℃. As a result of the adsorption equilibrium experiment over time, the equilibrium was reached within 30 min. for Cesium (Cs) and within 8 hr. for Strontium (Sr), and the adsorption rates of Cesium (Cs) and Strontium (Sr) were 80% and 18%, respectively. As a result of the single-component isothermal adsorption experiment, in conformed to the Langmuir model, and the maximum Cesium (Cs) adsorption amount was 131.5 mg/g, which was high, while the Strontium (Sr) maximum adsorption amount was 29.5 mg/g, which was low. In the case of the natural zeolite used in this study, the content of minerals including 8-rings such as clinoptilolite, heulandite, and mordenite is high, showing high selectivity for Cesium (Cs).

Effects of Humic Acid on the pH-dependent Sorption of Europium (Eu) to Kaolinite (PH 변화에 따른 카올리나이트와 유로퓸(Eu)의 흡착에 대한 휴믹산의 영향)

  • Harn, Yoon-I;Shin, Hyun-Sang;Rhee, Dong-Seok;Lee, Myung-Ho;Chung, Euo-Cang
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.23-32
    • /
    • 2009
  • The sorption of europium (Eu (III)) onto kaolinite and the influence of humic acids over a range of pH 3 ~ 11 has been studied by batch adsorption experiment (V/m = 250 : 1 mL/g, $C_{Eu(III)}\;=\;1\;{\times}\;10^{-5}\;mol/L$, $C_{HA}\;=\;5{\sim}50\;mg/L$, $P_{CO2}=10^{-3.5}\;atm$). The concentrations of HA and Eu(III) in aqueous phase were measured by UV absorbance at 254nm (e.g., $UV_{254}$) and ICP-MS after microwave digestion for HA removals, respectively. Results showed that the HA sorption onto kaolinite was decreased with increasing pH and their sorption isotherms fit well with the Langmuir adsorption model (except pH 3). Maximum amount ($q_{max}$) for the HA sorption at pH 4 to 11 was ranged from 4.73 to 0.47 mg/g. Europium adsorption onto the kaolinite in the absence of HA was typical, showing an increases with pH and a distinct adsorption edge at pH 3 to 5. However in the presence of HA, Eu adsorption to kaolinite was significantly affected. HA was shown to enhance Eu adsorption in the acidic pH range (pH 3 ~ 4) due to the formation of additional binding sites for Eu coming from HA adsorbed onto kaolinite surface, but reduce Eu adsorption in the intermediate and high pH above 6 due to the formation of aqueous Eu-HA complexes. The results on the ternary interaction of kaolinte-Eu-HA are compared with those on the binary system of kaolinite-HA and kaolinite-Eu and adsorption mechanism with pH was discussed.