• Title/Summary/Keyword: Adsorption model

Search Result 898, Processing Time 0.027 seconds

The Recovery of Heavy Metals Using Encapsulated Microbial Cells

  • Park, Joong-Kon;Jin, Yong-Biao;Park, Hyung-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.132-135
    • /
    • 1997
  • We prepared capsules containing Saccharomyces cerevisiae and Zoogloea ramigera cells for the removal of lead(II) and cadmium ions. Microbial cells were encapsulated and cultured in the growth medium. The S.cerevisiae cells grown in the capule did not leak through the capsule membrane. The dried cell density reached to 250 g/l on the basis of the inner volume of the 2.0 mm diameter capsule after 36 hour cultivation. The dry whole cell expolymer density of encapsulated Z.ramigera reached to 200 g/L. The capsule was crosslinked with triethylene tetramine and glutaric dialdehyde solutions. The cadmium uptake of encapsulated whole cell expolymer of Z.ramigera was 55mg Cd/g biosorbent. The adsorption line followed well Langmuir isotherm. The lead uptake of the encapsulated S. cerevisiae was about 30 mg Pb/g biomass. The optimum pH of the lead uptake using encapsulated S. cerevisiae was found to be 6. Freundlich model showed a little better fit to the adsorption data than Langmuir model 95 percent of the lead adsorbed on the encapsulated biosorbents was desorbed by the 1 M HCl solution. The capsule was reused 50 batches without loosing the metal uptake capacity. And the mechanical strength of the crosslinked capsule was retained after 50 trials.

  • PDF

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.

Synthesis and characterization of α-mangostin imprinted polymers and its application for solid phase extraction

  • Zakia, Neena;Zulfikar, Muhammad A.;Amran, Muhammad B.
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.251-263
    • /
    • 2020
  • α-mangostin imprinted polymers have been synthesized by a non-covalent imprinting approach with α-mangostin as a template molecule. The α-mangostin molecularly imprinted polymers (MIPs) prepared by radical polymerization using methacrylic acid, ethlylene glycol dimethacrylate, benzoyl peroxide, and acetonitrile, as a monomer, crosslinker, initiator, and porogen, respectively. The template was removed by using methanol:acetic acid 90:10 (v/v). The physical characteristics of the polymers were investigated by Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The rebinding studies were carried out by batch methods. The results exhibited that the MIPs was able to adsorb the α-mangostin at pH 2 and the contact time of 180 min. The kinetic adsorption data of α-mangostin performed the pseudo-second order model and followed the Langmuir isotherm model with the adsorption capacity of 16.19 mg·g-1. MIPs applied as a sorbent material in solid-phase extraction, namely molecularly imprinted solid-phase extraction (MISPE) and it shows the ability for enrichment and clean-up of α-mangostin from the complex matrix in medicinal herbal product and crude extract of mangosteen (Garcinia mangostana L.) pericarp. Both samples, respectively, which were spiked with α-mangostin gives recovery more than 90% after through by MISPE in all concentration ranges.

Exceptional removal capacity of clenbuterol from aqueous solution by mechano-synthesized [Cu (INA)2]-MOF via ball-mill

  • Marinah Mohd, Ariffin;Usman, Armaya'u;Saw Hong, Loh;Wan Mohd Afiq Wan Mohd, Khalik;Hanis Mohd, Yusoff
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.321-335
    • /
    • 2022
  • Copper-based Metal-organic framework (MOF) namely ([Cu (INA)2]-MOF) is synthesized by ball milling and characterized using scanning electron microscopy (SEM) for the topography, microstructure, and elemental evidence determination, powdered X-ray diffraction (XRD) for the crystallinity measurement, thermogravimetric (TG) analysis was performed to determine the thermal stability of the material, and Fourier transformed infrared (FTIR) spectroscopy for functional groups identification. The use of [Cu (INA)2]-MOF as hazardous removal material of β-agonists as persistent hazardous micro-pollutants in our environmental water is first reported in this study. The removal efficiency of the Cu-MOF is successfully determined to be 97.7% within 40 minutes, and the MOF has established an exceptional removal capacity of 835 mg L-1 with 95 % percent removal on Clenbuterol (CLB) even after the 5th consecutive cycle. The Langmuir model of the adsorption isotherms was shown to be more favourable, while the pseudo-second-order model was found to be favoured in the kinetics. The reaction was exothermic and spontaneous from a thermodynamic standpoint, and the higher temperatures were unfavourable for the adsorption study of the CLB. As a result, the studied MOF have shown promising properties as possible adsorbents for the removal of CLB in wastewater.

Simultaneous extraction of organic and inorganic compounds using molecularly/ion imprinted polymer

  • Yelin Lee;Hyeyoung Jung;Soomi Park;Sunyoung Bae
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.295-305
    • /
    • 2024
  • 5-Hydroxymethyl-2-furaldehyde (5-HMF) is considered one of the main quality indexes of various food products. Its metabolism in humans can potentially lead to carcinogenic compounds. Metallic ions such as Zn, Mg, Mn, and Fe have been reported to enhance 5-HMF formation. Recently, studies on adsorbents that can extract specific organic and inorganic substances with one adsorbent have been conducted. However, simultaneous analysis of organic and inorganic materials typically requires distinct pre-treatment and analytical methods, which increase a lot of labor and cost. In this study, hybrid imprinted polymer (HIP) by mixing 5-HMF imprinted polymer (FIP) and zinc ion imprinted polymer (ZIIP) were generated to extract two analytes, Zn ion and 5-HMF, simultaneously. Physicochemical characterization of HIP was conducted by Fourier-transform infrared spectroscopy, scanning electron microscopy, and sorption tests. Extraction conditions including adsorbent mixing ratio, adsorbate mixing range, and equilibrium time were optimized. Freundlich adsorption model was as the best-fitting isotherm model to elucidate the adsorption mechanism. Affinity of Zn ion and 5-HMF on HIP was superior to non-HIP. In conclusion, HIP showed reasonable feasibility that could be used as an adsorbent to be used for simultaneous extraction of organic and inorganic compounds present in the sample.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Development of Polymeric Adsorbents for the Treatment of Colored Waste Waters and Re-use of the Treated Water (II) - Quaternary Aminized Cellulosic Adsorbent - (유색폐수처리를 위한 고분자 흡착제의 개발과 처리수의 사용(II) - 4급 아민화 셀룰로오스 흡착제 -)

  • Soo-Min Park;Woo-Kyung Sung
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.131-135
    • /
    • 1992
  • Quaternary aminized cellulosic adsorbents (C $A_{QA}$ ) which exhibit adsorption capacities for anionic dyestuffs for the treatment of colored waste water and re-use of the treated water were studied. The isotherms and thermodynamic parameters of C.I. Acid Orange 7, solution considered as a model of negatively charged coloring matters for C $A_{QA}$ , were determined. Batch method and flow method were employed to determine decoloring capacity of cellulosic adsorbents for Orange 7. The cellulosic adsorbents exhibited much better adsorption capacity than activated carbon. Furthermore the exhausted cellulosic adsorbents could be readily regenerated by washing with dilute sodium hydroxide.

  • PDF

Sorbent Characteristics of Montmorillonite for Ni2+Removal from Aqueous Solution

  • Ijagbemi, Christianah Olakitan;Kim, Dong-Su
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • Sorption of $Ni^{2+}$ in aqueous solution was studied using montmorillonite. The experimental and equilibrium data fitted well to the Langmuir isotherm model. From the kinetics data for nickel sorption onto montmorillonite, the diffusion of $Ni^{2+}$ inside the clay particles was the dorminant step controlling the sorption rate and as such more important for $Ni^{2+}$ sorption than the external mass transfer. $Ni^{2+}$ was sorbed due to strong interactions with the active sites of the sorbent and the sorption process tends to follow the pseudo second-order kinetics. Thermodynamic parameters (${\Delta}G^{\circ},\;{\Delta}H^{\circ},\;{\Delta}S^{\circ}$) indicated a non spontaneous and endothermic adsorption process while the positive low value of the entropy change suggests low randomness of the solid/solution interface during the uptake of $Ni^{2+}$ by montmorilionite. Heavy metals such as $Ni^{2+}$ in aqueous bodies can effectively be sorbed by montmorillonite.

INFLUENCE OF HUMIC SUBSTANCE (HS) ADSORPTIVE FRACTIONATION ON PYRENE PARTITIONING TO DISSOLVED AND MINERAL-ASSOCIATED HS

  • Hur, Jin;Schlautman, Mark A.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.123-127
    • /
    • 2003
  • Changes in pyrene partitioning due to mineral surface adsorptive fractionation processes of humic substances (HS) were examined in model environmental systems. For purified Aldrich humic acid(PAHA), carbon-normalized pyrene binding coefficients ( $K_{oc}$ ) for the residual (i.e., nonadsorbed and dissolved) PAHA components were different from the original dissolved PAHA $K_{oc}$ , value prior to contact with mineral suspensions. A positive correlation between the extent of pyrene binding and weight-average molecular weight (M $W_{w}$) of residual PAHA components was observed, which appeared to be unaffected by the specific mineral adsorbents use and fractionation mechanisms. A similar positive correlation was not observed with the adsorbed PAHA components, suggesting that conformational changes occurred for the mineral-associated components upon adsorption. Nonlinear pyrene sorption to mineral-associated PAHA was observed, and the degree of nonlinearity is hypothesized to be dependent on adsorptive fractionation effects and/or structural rearrangement of the adsorbed PAHA components.s.

  • PDF