References
- Parker, S. P., Encyclopedia of environmental science, 2nd ed., McGraw Hill, New York (1980)
- ATSDR, Toxicological profile for nickel, U.S. Department of health and human services, Public health service, Agency for toxic substances and disease registry, U.S. Government printing office (1997)
- Beliles, R. P., The lesser metals, In: F.W. Oehme (Ed.), Toxicity of heavy metals in the environment, Part 2, Marcel Dekker, New York, pp. 547-616 (1979)
- Lin, S. H. and Juang, R. S., “Heavy metal removal from water by sorption using surfactant-modified montmorillonite,” Journal of Hazardous Materials, 92, 315-326 (2002) https://doi.org/10.1016/S0304-3894(02)00026-2
- Oliveira, E. A., Montanher, S. F., Andrade, A. D., Nobrega, J. A., and Rollemberg, M. C., “Equilibrum studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran,” Process Biochemistry, 40, 3485-3490 (2005) https://doi.org/10.1016/j.procbio.2005.02.026
- Ho, Y. S. and McKay, G., “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Resourses, 34, 735-742 (2000) https://doi.org/10.1016/S0043-1354(99)00232-8
- Aksu Z., “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto chlorella vulgaris,” Process Biochemistry, 38, 89-99 (2002) https://doi.org/10.1016/S0032-9592(02)00051-1
- Sparks, D. L., Environmental soil chemistry, Academic Press, San Diego, pp. 42 (1995)
-
Benyahya, L. and Garnier, J. M., “Effect of salicylic acidupon trace-metal sorption (
$ ) onto alumina, silica, and kaolinite as a function of pH,” Environment Science Technology, 33, 1398-1407 (1999) https://doi.org/10.1021/es980509i$Cd^{II},Zn^{II},Co^{II},and Mn^{II}$ $ - Kraepiel, A. M. L., Keller, K., and Morel, F. M. M., “A model for metal adsorption on montmorillonite,” Journal of Colloid Interface Science, 210, 43-54 (1999) https://doi.org/10.1006/jcis.1998.5947
- Ikhsan, J., Wells, J. D., Johnson, B. B., and Angove, M. J., “Surface complexation modeling of the sorption of Zn(II) by montmorillonite,” Colloids Surfaces A, 252, 33-41 (2005) https://doi.org/10.1016/j.colsurfa.2004.10.011
- Avena, M. J. and Pauli, C. J., “Proton adsorption and electrokinetics of an argentinean Montmorillonite,” Journal of Colloid Interface Science, 202, 195-204. (1998) https://doi.org/10.1006/jcis.1998.5402
- de Bussetti, S. G. and Ferreiro, E. A., “Adsorption of polyvinyl alcohol on montmorillonite,” Clays & Clay Minerals, 52, 334-340 (2004) https://doi.org/10.1346/CCMN.2004.0520308
- Ho, Y. S. and McKay, G., “Pseudo-second order model for sorption process,” Process Biochemistry, 34, 451-465 (1999) https://doi.org/10.1016/S0032-9592(98)00112-5
- Behera, S. K., Kim, J., and Hung-Suck, X., “Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon,” Journal of Hazardous Material, 153, 1207-1214 (2008) https://doi.org/10.1016/j.jhazmat.2007.09.117
- Ho, Y. S., Wase, D. A. J., and Forster, C. F., “Kinetics studies of competitive heavy metal adsorption by sphagnum moss peat,” Environmental Technology, 17, 71-77 (1996) https://doi.org/10.1080/09593331708616362
- McKay, G., and Poots, V. J. P., “Kinetics and diffusionprocess in color removal from effluent using wood as an adsorbent,” Journal of Chemical Technology & Biotechnology, 30, 279-292 (1980)
- Urano, K. and Tachikawa, H., “Process development for removal and recovery of phosphorus from Waste-water by a new adsorbent. 2. Adsorption Rates and Breaktrough Curves,” Industrial Engineering Chemical Research, 30, 1897-1899 (1991) https://doi.org/10.1021/ie00056a033
- Weber, W. J., Physicochemical processes for water quality control, Wiley-Interscience, New York, NY. (1972)
Cited by
- Inversion of Montmorillonite Ion-Exchange Characteristics vol.82, pp.2, 2020, https://doi.org/10.1134/s1061933x20020064