• Title/Summary/Keyword: Adsorption material

Search Result 709, Processing Time 0.026 seconds

Pulp Mold as a Packaging Material for Maintaining the Freshness of Fruits and Vegetables

  • Won, Jong-Myoung;Song, Che-Yun
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.455-458
    • /
    • 2006
  • The oak and pine charcoal were used to develop the internal packaging raw material for maintaining the freshness of vegetables and fruits, and to investigate the possibility in the application for pulp mold packaging. The effects of the charcoal type, species, particle size, and grammage on the adsorption efficiency of ethylene gas were studied. White charcoal has superior ethylene gas adsorption performance to those of black charcoal. Pine charcoal was superior to oak charcoal in the ethylene gas adsorption. Higher gas adsorption was obtained by the higher grammage sheet. The difference in the adsorption efficiency was not significant between ONP and KOCC.

  • PDF

Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment (해양 퇴적물에서 인 용출 차단을 위한 반응성 피복 소재로서 제강슬래그의 적용성 검토)

  • Jo, Sung-Wook;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • We investigated the applicability of steel slag as a capping material in order to minimize phosphorus(P) release into seawater. Steel slag is a byproduct from the iron and steel industries and the use of steel slag has some advantages in respect of both cost and environmental concern. P removal by steel slag were studied in a batch system with respect to changes in contact time and initial concentration. Kinetic adsorption data were described well by pseudo 2nd order model, indicating rate limiting step for P adsorption to steel slag is chemical sorption. Equilibrium adsorption data fitted well to Langmuir isotherm model which describes for single layer adsorption. The maximum P adsorption capacity of steel slag was 7.134 mg-P/L. Increasing the depth of steel slag produced a positive effect on interruption of P release. More than 3 cm of steel slag was effective for blocking P release and 5 cm of steel slag was recommended as the depth for capping of P contaminated marine sediments. Increasing P concentration and flow rate had a negative effect on P removal ratio. It was concluded that the steel slag has a potential capping material for blocking P release from marine sediments.

Rh-doped carbon nanotubes as a superior media for the adsorption of O2 and O3 molecules: a density functional theory study

  • Cui, Hao;Zhang, Xiaoxing;Yao, Qiang;Miao, Yulong;Tang, Ju
    • Carbon letters
    • /
    • v.28
    • /
    • pp.55-59
    • /
    • 2018
  • Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of $O_2$ and $O_3$ onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially $O_3$ molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.

The Study of Gas Sensor Using Rheological Properties of Polymeric Sensitive LB Films (고분자감응성 LB막의 유변학적인 특성을 이용한 가스센서 연구)

  • 강현욱;김정명;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.198-201
    • /
    • 1997
  • The new system for identification of organic vapours and analysis method of mechanism between organic vapours and sensitive materials were attempted using the resonant resistance and resonant frequency of Quartz Crystal Analyzer (Q. C. A.). The resonant resistance shift means rheological changes in sensitive LB films occurred by the adsorption of organic vapours, while the resonant frequency shift represent the mass of organic vapour loaded in or on the sensitive LB films. It is thought that we can obtain more accurate response mechanism of organic vapour using the resonant frequency and resonant resistance diagram. The polymeric sensitive material were quantitively depositied using the LB method. In the experimental results, the adsorption behavior of organic vapour response can be decided by two type ; surface adsorption and penetration into sensitive material. Organic vapours had different positions in the Frequency-Resistance (F-R) diagram as to the kinds and concentrations of organic vapours. Thus F-R diagram can be applied to the development of one channel gas sensing system using the Quartz Crystal Analyzer.

  • PDF

Strain Dependence of Adsorption Energy of Single Layer MoS2: Possibility of Catalytic Usage

  • Jeon, Bu-Gyeong;Lee, Chang-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.355-356
    • /
    • 2016
  • It is shown that the maximum value of exchange current is obtained where hydrogen adsorption energy is near 0. This enables to estimate catalytic efficiency of a material with hydrogen adsorption energy, which is relatively easier to calculate with density fuctional theory (DFT) method. Strain dependence of the adsorption energy was studied with DFT method and adsorption energy of 0.04 eV per hydrogen atom is obtained at 30% strain.

  • PDF

Design Effect of Different Components and Economic Evaluation of an Adsorption Chiller on the System Performance

  • Bidyut B. Saha;Shigeru Koyama;K.C. Amanul Alam;Lee, Jong-Boong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.17-22
    • /
    • 2002
  • A conventional silica gel/water adsorption chiller has been analyzed numerically. A novel non-dimensional mathematical model has been presented to analyze the design effect of different components of an adsorption chiller. The design parameters of this system are characterized by the number of transfer unit, NTU, of different components and the inert material alpha number, ${\alpha}$of different components of the systems. Results show that condenser NTU$\sub$a/ has the most influential effect on the system performance, which is fellowed by absorber NTU$\sub$e/. It is also seen that coefficient of performance (COP) and non-dimensional specific cooling capacity increases with the increase of NTU$\sub$a/ and NTU$\sub$e/, but decreases with the increase of inert material alpha number. A thermo-economic data of the adsorption chiller and some other heat pump systems those are in practical operation are also presented.

  • PDF

Organic Wastewater Treatment by using Bamboo Charcoal (대나무 고온탄을 이용한 유기성 폐수처리)

  • Kim, Sun-Hwa;Kim, Hae-Jin;Kim, Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.17-27
    • /
    • 2007
  • This study was conducted the adsorption experiment way of organic wastewater (BOD, COD, TOC, T-N, T-P) by changing the carbonization temperature and the size of adsorbent to examine the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. Also, it was performed the basic experiment for pH and inorganic materials. As a result of observing Korean traditional charcoal with has the greatest inorganic contents which are the important factor of chemical adsorption. As the carbonization temperature was better high temperature charcoal than law temperature charcoal to adsorption capacity of pollutant and as the particle was minute (D size : $3.35mm{\sim}2.0mm$), it was most effective. The result of adsorption experiment of organic wastewater show that the elimination ratio of pollutants by bamboo high temperature charcoal was found as BOD(82.1%), COD(91.7%), TOC(52.4%), T-N(66.6%), T-P(83.2%) and it has most excellent adsorption capacity of organic pollutants.

Characteristics of Phosphorus Adsorption on Titanium Meso-structure Synthesized under Various Conditions of Surfactant (계면활성제의 다양한 조건에서 합성된 티타늄 메조구조체를 이용한 수중의 인 흡착 특성 연구)

  • Choi, Jae-Woo;Choi, Ji-Youn;Lee, Seung-Yeon;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.413-423
    • /
    • 2010
  • Eutrophication caused by the excessive supply of phosphorus to water has been considered as one of the most important environmental problems. In this study, the titanium mesostrcture, which was prepared with the template of different surfactant, was tested to confirm the applicability as an adsorbent for phosphorus removal and evaluate the phosphorus removal efficiency. X-ray diffraction analysis, phosphorus adsorption istotherm and kinetic test were performed for the titanium mesostructure, synthesized at various base material/surfactant molar ratio and with different surfactant templates. From the results, we found that mesostructure was synthesized at the base material/surfactant molar ratio of 1/0.25 was most uniformly and clearly formed and thus the adsorption capacity was also maximized.

The Influence of Coexisting Material on the Photocatalytic Removal of Humic Acid (광촉매를 이용한 Humic Acid 광부해시 공존물질이 광분해에 미치는 영향)

  • Ryu, Seong Pil;Hyeon, Gyeong Ja;O, Yun Geun
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. A set of tests was first conducted in the dark to study the adsorption of HA at different coexisting material concentration. Adsorption rate increased with adding cation ion but decreased with adding bicarbonate ion. The photodegradation of HA in the presence of UV irradiation was investigated as a function of different experimental condition: initial concentration of HA, $TiO_2$ weight, pH, air flow rate and coexisting material. It was increased either at low pH or by adding cation ion. The increase of cation strength in aqueous solution could provide a favorable condition for adsorption of HA on the $TiO_2$ surface and therefore enhance the photodegradation rate. It was found that bicarbonate ions slowed down the degradation rate by scavening the hydroxyl radicals.