• 제목/요약/키워드: Adsorption configurations

검색결과 26건 처리시간 0.027초

DFT Study of CO2 Adsorption on the Zn12O12 Nano-cage

  • Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3722-3726
    • /
    • 2013
  • Covalent functionalization of a $Zn_{12}O_{12}$ nano-cage with $CO_2$ molecule in terms of energetic, geometry, and electronic properties was investigated by density functional theory method. For chemisorption configurations, the adsorption energy of $CO_2$ on the $Zn_{12}O_{12}$ nano-cage for the first $CO_2$ was calculated -1.25 eV with a charge transfer of 1.00|e| from the nano-cage to the $CO_2$ molecule. The results show that $CO_2$ molecule was significantly detected by pristine $Zn_{12}O_{12}$ nano-cage, therefore the nano-cage can be used as $CO_2$ storage. Also, more efficient binding could not be achieved by increasing the $CO_2$ concentration. For Physisorption configurations, HOMO-LUMO gap of the configurations has not changed, while slight changes have been observed in the chemisorption configurations.

Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2×n Surface

  • Oh, Seung-Chul;Kim, Ki-Wan;Mamun, Abdulla H.;Lee, Ha-Jin;Hahn, Jae-Rayng
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.162-167
    • /
    • 2010
  • We investigated the adsorption and desorption characteristics of benzene molecules on $Si(001)-2{\times}n$ surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a $Si(001)-2{\times}n$ surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twisted-bridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface.

Footprints of water molecules on Si(001) and co-adsorption configurations obtained via low temperature scanning tunneling microscopy

  • Tham, Tran Thi;Son, Lee-Seul;Oh, Suhk-Kun;Kang, Hee-Jae;Kim, Han-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2010
  • Water adsorption on Si(001)-c($4{\times}2$) surface is investigated at low temperature by using scanning tunneling microscope (STM) and ab initio pseudopotential calculations. $H_2O$ configurations of single and cluster of two molecules reveal "Y", "X" and "W" depressions as footprints on the surface. Atomic structures of $H_2O$ molecules, which are dissociatively adsorbed on the Si(001)-c($4{\times}2$) surface, are studied with simulated and STM images of the filled states. The generation processes of the growth configurations are systematically considered with elapsed time.

  • PDF

Glass 패널 진공흡착시스템의 유동해석 연구 (Study on Flow Analysis in Glass Panel Vacuum Lift System)

  • 김동균;윤천석
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.886-893
    • /
    • 2009
  • To develop glass panel vacuum lift system for the post process in module line of FPD(Flat panel display) such as LCD and PDP, new vacuum adsorption parts of this system are proposed. These parts are composed of variable geometry configurations utilizing ceramic porous medium for variable size of glass panels. In order to design this device, detail understanding of flow phenomena in the flow path of vacuum adsorption system is essential. Thus, CFD analysis and designs are performed for several configurations in terms of pressure drop and balancing force at the adsorption side. From the result, new configuration is recommended for optimum design and manufacturing purpose.

Stereoselective attachment of S-Proline on Ge(100)

  • Youn, Young-Sang;Kim, Ki-Jeong;Kim, Bong-Soo;Lee, Hang-Il;Kim, Se-Hun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.367-367
    • /
    • 2010
  • The adsorption configurations of S-proline on Ge(100) were studied using scanning tunneling microscopy (STM), density functional theory (DFT) calculations, and high-resolution core-level photoemission spectroscopy (HRCLPES). We identified three adsorption structures of S-proline on Ge(100) through analysis of the STM images, DFT calculations, and HRCLPES results: (i) an 'intrarow O - H dissociated and N dative bonded structure', (ii) an 'O - H dissociation structure', and (iii) an 'N dative bonded structure'. Moreover, because adsorption through the N atom of S-proline produces a new chiral center due to symmetry reduction by N dative bonding, the adsorption configurations have either (R,S) or (S,S) chirality, yielding an (R,S)-'intrarow O - H dissociated and N dative bonded structure' and an (R,S)-'N dative bonded structure', with a preference for reaction at the Re face. This work presents a novel method for generating stereoselective attachment using S-proline molecules adsorbed onto a Ge(100) surface.

  • PDF

Comparison of Coverage-Dependent Adsorption Structures of Alanine and Leucine on Ge(100): Bonding Configuration and Adsorption Stability

  • 박영찬;양세나;김정원;이한길
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.215-215
    • /
    • 2011
  • The bonding configuration and adsorption stability of alanine and leucine adsorbed on Ge(100)-2${\times}$1 surface were investigated and compared using core-level photoemission spectroscopy (CLPES) and density functional theory (DFT) calculations. The bonding configuration, stability, and adsorption energies were evaluated for two different coverage levels. In both cases, the C 1s, N 1s, and O 1s core-level spectra at a low coverage (0.30 ML) indicated that the carboxyl and amine groups participated in bonding with the Ge(100) surface in an "O-H dissociated-N dative bonded structure". At high coverage levels (0.60 ML), both this structure and an "O-H dissociation bonded structure" were present. As a result, we found that alanine adsorbs more easily (lower adsorption energy) than leucine on Ge(100) surfaces due to less steric hindrance of side chain.

  • PDF

Inter-row Adsorption Configuration and Stability of Threonine Adsorbed on the Ge(100) Surfaces

  • Lee, Myungjin;Park, Youngchan;Jeong, Hyuk;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1055-1060
    • /
    • 2013
  • The adsorption structures of threonine on the Ge(100) surface were investigated using core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. CLPES measurements were performed to identify the experimentally preferred adsorption structure. The preferred structure indicated the relative reactivities of the carboxyl and hydroxymethyl groups as electron donors to the Ge(100) surface during adsorption. The core-level C 1s, N 1s, and O 1s CLPES spectra indicated that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction. Three among six possible adsorption structures were identified as energetically favorable using DFT calculation methods that considered the inter- and intra-bonding configurations upon adsorption onto the Ge(100) surface. These structures were O-H dissociated N dative inter bonding, O-H dissociated N dative intra bonding, O-H dissociation bonding. One of the adsorption structures: O-H dissociated N dative inter bonding was predicted to be stable in light of the transition state energies. We thus confirmed that the most favorable adsorption structure is the O-H dissociated N dative-inter bonding structure using CLPES and DFT calculation.

Comparison of Adsorption Configurations between Phenylalanine and Tyrosine on Ge(100)

  • 임희선;양세나;이한길
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.216-216
    • /
    • 2011
  • We will investigate the bonding configurations of phenylalanine and tyrosine adsorbed on the Ge(100) surface using CLPES and DFT calculations. First, the C 1s, N 1s, and O 1s spectra obtained at 300 K revealed that both the amine and carboxyl groups of phenylalanine and tyrosine concurrently participated in adsorption on the Ge(100) surface without bond breaking using CLPES, depending on the extent of coverage. In the second place, we confirmed that the "O-H dissociated-N dative bonded structure" is the most stable structure implying kinetically favorable structure, and the "O-H dissociation bonded structure" is another stable structure manifesting thermodynamically advantageous structure using DFT calculations. This tendency turns up both phenylalanine and tyrosine, similarly. Furthermore, through the CLPES data and DFT calculation data, we discovered that the "O-H dissociated-N dative bonded structure" and the "O-H dissociation bonded structure" are preferred at 0.30 ML and 0.60 ML, respectively. Moreover, we found that the phenyl ring of phenylalanine is located in axial position to Ge(100) surface, but the phenyl ring of tyrosine is located in parallel to Ge(100) surface using DFT calculations.

  • PDF

Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface

  • Lee, Myungjin;Lee, Hangil
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.137-137
    • /
    • 2013
  • The most stable adsorption structures and their corresponding energies of 4-pyridone, 4-hydroxypyridine, 2-pyridone and 2-hydroxypyridine have been investigated by Density Functional Theory (DFT) calculation method and high-resolution photoemission spectroscopy (HRPES). We confirmed that between the two reaction centers of 4- and 2-pyridone, only O atom of carbonyl functional group can act as a Lewis base and thus, O dative bonding structure is the most stable. On the other hand, we clarified that both the two reaction centers (the cyclic N atom and the O atom of hydroxyl functional group) of 4- and 2-hydroxypyridine (tautomers of 4- and 2-pyridone) can successfully function as a Lewis base. Through the interpretation of the N 1s and O 1s core level spectra obtained using HRPES, we could confirm the electronic structures and bonding configurations of these molecules with a coverage dependence on the Ge(100) surface.

  • PDF

Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface: Conjugation and Geometric Configuration Effects on Adsorption Structures

  • Kim, Minkyung;Lee, Myungjin;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.581-586
    • /
    • 2014
  • The most stable adsorption structures and their corresponding energies of 4-pyridone, 4-hydroxypyridine, 2-pyridone and 2-hydroxypyridine have been investigated by Density Functional Theory (DFT) calculation and high-resolution photoemission spectroscopy (HRPES). We confirmed that between the two reaction centers of 4- and 2-pyridone, only O atom of carbonyl functional group can act as a Lewis base while both the two reaction centers of 4- and 2-hydroxypyridine (tautomers of 4- and 2-pyridone) can successfully function as a Lewis base. On the other hand, owing to their molecular structures, there is a remarkable difference between the adsorption structures of 4- and 2-hydroxypyridine. Through the analysis of the N 1s and O 1s core level spectra obtained using HRPES, we also could corroborate that two different adducts coexist on the surface at room temperature due to their activation energy investigating the coverage dependent variation of bonding configurations when these molecules are adsorbed on the Ge(100) surface.