• Title/Summary/Keyword: Adsorption behavior

Search Result 489, Processing Time 0.026 seconds

$Co_2$ Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid

  • Liu, D.;Fu, C.Y.;Chen, Z.Y.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.227-232
    • /
    • 2007
  • The corrosion behavior of carbon steel (N80) in carbon dioxide saturated 1%NaCl solution with and without acetic acid or acetate was investigated by weight-loss test, electrochemical methods (polarization curve, Electrochemical impedance spectroscopy). The major objective is to make clear that the effect of acetic acid and acetate on the corrosion of carbon steel in $Co_2$ environments. The results indicate that either acetic acid or acetate accelerates cathodic reducing reaction, facilitates dissolution of corrosion products on carbon steel, and so promotes the corrosion rate of carbon steel in carbon dioxide saturated NaCl solution. All Nyquist Plots are consisting of a capacitive loop in high frequency region, an inductive loop in medial frequency region and a capacitive arc in low frequency region. The high frequency capacitive loop, medial frequency inductive loop and low frequency capacitive arc are corresponding to the electron transfer reaction, the formation/adsorption of intermediates and dissolution of corrosion products respectively. All arc of the measured impedance reduced with the increase of the concentration of Ac-, especially HAc. However, the same phenomenon is not notable after reducing pH value by adding HCl. HAc is a stronger proton donor and can be reduced directly by electrochemical reaction firstly. Ac- can't participate in electrochemistry reaction directly, but $Ac^-$ an hydrate easily to create HAc in carbon dioxide saturated environments. HAc is as catalyst in $Co_2$ corrosion. As a result, the corrosion rate was accelerated in the presence of acetate ion even pH value of solution increased.

An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell (직접탄소 연료전지에서 RDF 및 RPF의 전기화학반응 특성에 관한 실험적 연구)

  • Ahn, Seong Yool;Rhie, Young Hoon;Eom, Seong Yong;Sung, Yeon Mo;Moon, Cheor Eon;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.513-520
    • /
    • 2012
  • The electrochemical reaction of refuse derived fuel (RDF) and refuse plastic/paper fuel (RPF) was investigated in the direct carbon fuel cell (DCFC) system. The open circuit voltage (OCV) of RPF was higher than RDF and other coals because of its thermal reactive characteristic under carbon dioxide. The thermal reactivity of fuels was investigated by thermogravimetric analysis method. and the reaction rate of RPF was higher than other fuels. The behavior of all sample's potential was analogous in the beginning region of electrochemical reactions due to similar functional groups on the surface of fuels analyzed by X-ray Photoelectron Spectroscopy experiments. The potential level of RDF and RPF decreased rapidly comparing to coals in the next of the electrochemical reaction because the surface area and pore volume investigated by nitrogen gas adsorption tests were smaller than coals. This characteristic signifies the contact surface between electrolyte and fuel is restricted. The potential of fuels was maintained to the high current density region over 40 $mA/cm^2$ by total carbon component. The maximum power density of RDF and RPF reached up to 45~70% comparing to coal. The obvious improvement of maximum power density by increasing operating temperature was observed in both refuse fuels.

Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers (생체적합성 고분자를 사용한 다층 조립 구조 캡슐의 제조와 특성)

  • Jeon, Woohong;Kim, Gwang Yeon;Kim, Gue-Hyun;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • The aim of this work is the fabrication of polyelectrolyte microcapsules composed of biocompatible polymers such as chitosan, heparin and alginate, to encapsulate the fluorescein isothiocyanate(FITC)-albumin, and to investigate the protein release behavior therefrom. Polyelectrolyte capsules with 4-layer structures could be prepared with biocompatible materials by oppositely charged adsorption using melamin-foramide as a template. Transmission electron microscope(TEM), scanning electron microscope(SEM) and optical microscope confirmed hollow capsule structures. Protein release before and after encapsulation was monitored with a UV-Vis spectrometer. Microcapsules have different behaviors depending on the kind of polyelectrolyte polymers, chitosan-heparin capsules or chitosan-alginate capsules. In conclusion, the polyelectrolyte multilayer shells can be switched between an open and closed state by means of tuning the pH value.

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Removal Characteristics of Dissolved Uranium by Shewanella p. and Application to Radioactive Waste Disposal (스와넬라균(Shewanella p.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처분에의 응용)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Song, Jun-Kyu
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.471-477
    • /
    • 2009
  • An experimental removal of dissolved uranium (U) exsiting as uranyl ion (${UO_2}^{2+}$) was carried out using Shewanella p., iron-reducing bacterium. By the microbial reductive reaction, initial U concentration ($50{\mu}M$) was constantly decreased, and most U were removed from solution after 2 weeks. Major mechanism that U was removed from the solution was adsorption, precipitation and mineralization on the microbe surface. Under the transmission electron microscopy, the U adsorbed on the microbe was observed as being crystallized and eventually enlarged to several ${\mu}m$ sizes of minerals by combining with individual microbes and organic exudates. It seems that such U growth and mineralization on the microbial surface could affect the U behavior in a radioactive waste disposal site. Thus, the biogechemical reaction of metal-reducing bacteria observed in this experiment could give an affirmative measure that the microbial activity may retard U movement in subsurface environment.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites (Mg2NiHx-5wt% CaO 복합재료의 수소화 속도)

  • SHIN, HYO-WON;HWANG, JUNE-HYEON;KIM, EUN-A;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M.;Yahia, I. S.;Zahran, H.Y.;Ibrahim, M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1437-1443
    • /
    • 2018
  • In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.

Study on Explosion Characteristics and Thermal Stability of Activated Carbon (활성탄의 폭발특성과 열안정성에 관한 연구)

  • Yi-Rac Choi;Dong-Hyun Seo;Ou-Sup Han;Hyo-Geun Cha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.134-140
    • /
    • 2023
  • Activated carbon is a carbonaceous material mainly used as a gaseous or liquid adsorbent. As fire-related accidents occur consistently due to the accumulation of heat of adsorption and oxidation of volatile organic compounds, the explosive characteristics and thermal stability of powdered and granular activated carbon made from coal and coconut shells were evaluated. As a result of the particle size analysis, the powdered activated carbon was in the particle size range (0.4~3) ㎛, and thermal properties such as exothermic onset temperature and decomposition behavior were analyzed using a differential scanning calorimetry and a thermogravimetric analysis. As a result of the evaluation of the explosion hazards for dust, both coal-based and coconut-based powdered activated carbon are classified as St1 class with weak explosion, but this is a relative and does not mean that the explosion hazards is absolutely low. Therefore, it is necessary to establish countermeasures for reducing the damage.

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF