• Title/Summary/Keyword: Adsorption Rate

Search Result 1,043, Processing Time 0.024 seconds

Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Coomassi Brilliant Blue G Using Activated Carbon (입상 활성탄에 의한 Coomassi Brilliant Blue G의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2014
  • Batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for adsorption of coomassi brilliant blue G (CBBG) using activated carbon with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich and Dubinin-Radushkevich isotherms. From estimated separation factor of Langmuir and Freundlich, this process could be employed as effective treatment for removal of CBBG. Also from Dubinin-Radushkevich isotherm model, adsorption energy (E) indicated adsorption process is physical adsorption. From kinetic experiments, the adsorption reaction was found to confirm to the pseudo second order model with good correlation. Intraparticle diffusion was rate controlling step. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (406.12 kJ/mol) indicated endothermic nature of the adsorption process. The change of entropy (1.66 kJ/mol K) showed increasing disorder in process. The change of free energy found that the spontaneity of process increased with increasing adsorption temperature.

Competive Adsorption Characteristics of CFW on Cu and Zn (음식물 탄화재의 Cu와 Zn에 대한 경쟁 흡착특성)

  • Han, Jung-Geun;Kim, Dong-Chan;Hong, Ki-Kwon;Yoon, Won-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This paper describes the batch test results for application of CFW(Carbonized Foods Waste), which was produced by the process of recycling waste, in PRB system. It analyzed characteristics for individual adsorption and competitive adsorption of Cu and Zn in heavy metals. In individual adsorption, the Langmuir and Freundlich models are used to predict adsorption equilibrium. The adsorption equilibrium corresponded to the Langmuir's and the maximum adsorption amount of Cu was greater than Zn's. The removal of heavy metal is predicted that Zn was faster than Cu. The reaction rate of Zn based on Pseudo-first-order and Pseudo-second-order was faster than Cu's, and the result of competitive adsorption test confirmed that the adsorption amount of Zn is reduced under similar condition for competitive adsorption rate of Cu and Zn. When Zn solution is mixed in Cu, Cu is adsorbed 86% on CFW. However, the adsorption of Zn is 19% on the contrary condition. Therefore, the removal characteristics of separate heavy metal should be considered for efficient treatment of contaminated ground based on complex heavy metal.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon (입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.

Adsorption Kinetics of metals (Cu, Cd, Pb) in Tidal Flat Sediments and Yellow Loesses (갯벌과 황토에 의한 중금속 (Cu, Cd, Pb)의 흡착 kinetics)

  • YOU Sun-Jae;KIM Jong-Gu;KIM Jong-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.250-256
    • /
    • 2000
  • The purpose of this study was to investigate the adsorption kinetics of heavy metals (Cu, Cd and Pb) using three tidal flat sediments and two yellow loesses. The relationship between adsorption rate calculated by non-linear regression model and chemical parameters was estimated. The contents of ignitiot loss (I.L.) am Fe, Mn and Al oxides of yellow loess were higher $1.5{\~}6 times$ than those of tidal flat sediments. But the contents of silt and clay of tidal flat sediment in Eueunri was higher than others. Heavy metals adsorption were occured rapidly in the intial 30 min and the concentration of adsorbed heavy metals were $4.1{\~}14.7\;{\mu}g/g\;for\;Cu,\;2.8{\~}16.7\;{\mu}g/g\;for\;Cd\;and\;43.4{\~}101.7\;{\mu}g/g$ for Pb, showing a high cumulative adsorption of $8{\~}70{\%}\;for\;Cu,\;18{\~}31{\%}\;for\;Cd and\;19{\~}52{\%}$ for Pb after 3hr. In initial concentration of $0.5{\times}10^(-5)M$, adsorption rate of heavy metals by the tidal flat sediments and yellow loesses was the sequence Pb>Cu^gt;Cd. The adsorption kinetics of Cu, Cd and Pb was found to be one-site kinetic model. Especially, in the case of Cu, there was a high negative ($R^2= -0.88{\~}-0.99$) linear correlation between chemical parameter such as I.L., Al oxide, silt and clay, and adsorption rate coefficients ($K_a$) calculated by non-linear model.

  • PDF

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation (중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성)

  • Shin, Eun-Chul;Park, Jeong-Jun;Jeong, Cheol-Gyu;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-67
    • /
    • 2014
  • The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.

Modeling of the Nitrate Adsorption Kinetics onto $ZnCl_2$ Treated Granular Activated Carbon (염화아연으로 표면개질된 입상활성탄의 질산성질소 흡착속도의 모델링 연구)

  • Ji, Min-Kyu;Jung, Woo-Sik;Bhatnagar, Amit;Jeon, Byong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.21-26
    • /
    • 2008
  • Nitrate adsorption from aqueous solutions onto zinc chloride ($ZnCl_2$) treated coconut Granular Activated Carbon (GAC) was studied in a batch mode at two different initial nitrate concentrations (25 and 50 mg/L). The rate of nitrate uptake on prepared media was fast in the beginning, and 50% of adsorption was occurred within 10 min. The adsorption equilibrium was achieved within one hour. The mechanism of adsorption of nitrate on $ZnCl_2$ treated coconut GAC was investigated using four simplified kinetic models : the rate parameters were calculated for each model. The kinetic analysis indicated that pseudo-second-order kinetic with pore-diffusion-controlled was the best correlation of the experimental kinetic data in the present adsorption study.

Removal Characteristics of Crystal Violet and Methylene Blue from Aqueous Solution using Wood-based Activated Carbon (목질계 활성탄에 의한 수중의 Methylene blue와 Crystal violet의 제거 특성)

  • Jeon, Jin-Wo;Yu, Hae-Na;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1433-1441
    • /
    • 2013
  • The adsorption ability of wood-based activated carbon to adsorb methylene blue (MB) and crystal violet (CV) from aqueous solution has been investigated. Adsorption studies were carried out on the batch experiment at different initial MB and CV concentrations (MB=150 mg/L~400 mg/L, CV=50 mg/L~350 mg/L), contact time, and temperature. The results showed that the MB and CV adsorption process followed the pseudo-second-order kinetic and intraparticle diffusion was the rate-limiting step. Adsorption equilibrium data of the adsorption process fitted very well to both Langmuir and Freundlich model. The maximum adsorption capacity ($q_m$) by Langmuir constant was 416.7 mg/g for MB and 462.4 mg/g for CV. The thermodynamic parameters such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$ and ${\Delta}G^{\circ}$ were evaluated. The MB and CV adsorption process was found to be endothermic for the two dyes.

Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles

  • Safavi, Banafshe;Asadollahfardi, Gholamreza;Darban, Ahmad khodadadi
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • One of the methods of removing cyanide from wastewater is surface adsorption. We simulated the removal of cyanide from a synthetic wastewater in the presence of Titanium dioxide nano-particles absorbent uses VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of cyanide from synthetic wastewater applying simulation. Synthetic wastewater with a concentration of 100 mg/l of potassium cyanide was used for simulation. The amount of titanium dioxide was 1 g/l under the temperature of $25^{\circ}C$. The simulation was performed using an adsorption model of Freundlich and constant capacitance model. The results of simulation indicated that three factors including pH, nanoparticles of titanium dioxide and the primary concentration of cyanide affect the adsorption level of cyanide. The simulation and experimental results had a good agreement. Also by increasing the pH level of adsorption increases 11 units and then almost did not change. An increase in cyanide concentration, the adsorption level was decreased. In simulation process, rising the concentrations of titanium dioxide nanoparticles to 1 g/l, the rate of adsorption was increased and afterward no any change was observed. In all cases, the coefficient of determination between the experimental data and simulation data was above 0.9.

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.