• Title/Summary/Keyword: Adsorbent column

Search Result 88, Processing Time 0.02 seconds

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

The Influence of Aqueous Ionic, Condition on the Adsorption Features of Fluoride Ion on Waste Oyster Shell (수중 이온 환경이 폐굴껍질에 대한 불소 이온의 흡착 양상에 미치는 영향)

  • Lee, Jin-Sook;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.314-318
    • /
    • 2007
  • The feasibility of the employment of waste oyster shell as an adsorbent for fluoride ion has been tested by considering the effect ionic condition on the adsorption of fluoride ion on oyster shell. The adsorption capacity of oyster shell for fluoride ion was found not to be significantly influenced by the ionic strength of aqueous environment. The existence of complexing agent such as nitrilotriacetic acid in wastewater decreased the adsorbed amount of fluoride ion by forming a stable complex of $CaT^-$ and the adsorption reaction of fluoride ion on oyster shell was examined to be endothermic. The coexisting heavy metal ionic adsorbate in wastewater hindered the adsorption of fluoride ion, however, its adsorbed amount was increased as the particulate size of adsorbent was decreased. Finally, a serial adsorption column test has been conducted for a practical application of adsorption process and the breakthrough of the column adsorption was observed in 22 hours under the experimental condition.

Direct Purification of Lysozyme from Hen Egg White Using High Density Mixed Mode Adsorbent

  • KIM, WON KYUNG;BONG HYUN CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.292-296
    • /
    • 1999
  • The high density mixed mode adsorbent known by the trade name of Mimo-AD was used to purify lysozyme directly from the hen egg white (HEW). The homogenized hen egg white was treated with the adsorbent in a stirred vessel for lysozyme adsorption, and then the adsorbent, easily separated from the HEW by sedimentation, was packed into a column. The remaining HEW and contaminant proteins were removed by washing with pH 11 distilled water in an expanded-bed state, and subsequently the elution was performed with pH 12 distilled water in a packed-bed state. By this simple and rapid adsorption, washing, and elution procedure, lysozyme was purified to>95% with an overall recovery yield of 66%. This process offers a great potential for industrial application by allowing the extraction of lysozyme while retaining the commercial value of HEW.

  • PDF

Modelling and packed bed column studies on adsorptive removal of phosphate from aqueous solutions by a mixture of ground burnt patties and red soil

  • Rout, Prangya R.;Dash, Rajesh R.;Bhunia, Puspendu
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.231-251
    • /
    • 2014
  • The present study examines the phosphate adsorption potential and behavior of mixture of Ground Burnt Patties (GBP), a solid waste generated from cooking fuel used in earthen stoves and Red Soil (RS), a natural substance in fixed bed column mode operation. The characterization of adsorbent was done by Proton Induced X-ray Emission (PIXE), and Proton Induced ${\gamma}$-ray Emission (PIGE) methods. The FTIR spectroscopy of spent adsorbent reveals the presence of absorbance peak at $1127cm^{-1}$ which appears due to P = O stretching, thus confirming phosphate adsorption. The effects of bed height (10, 15 and 20 cm), flow rate (2.5, 5 and 7.5 mL/min) and initial phosphate concentration (5 and 15 mg/L) on breakthrough curves were explored. Both the breakthrough and exhaustion time increased with increase in bed depth, decrease in flow rate and influent concentration. Thomas model, Yoon-Nelson model and Modified Dose Response model were used to fit the column adsorption data using nonlinear regression analysis while Bed Depth Service Time model followed linear regression analysis under different experimental condition to evaluate model parameters that are useful in scale up of the process. The values of correlation coefficient ($R^2$) and the Sum of Square Error (SSE) revealed the Modified Dose Response model as the best fitted model to the experimental data. The adsorbent mixture responded effectively to the desorption and reusability experiment. The results of this finding advocated that mixture of GBP and RS can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution.

A Study on the Low Concentration Carbon Dioxide Adsorbent and Optimal Conditions (저농도 이산화탄소 포집용 흡착제 개발 및 최적조건에 관한 연구)

  • Lee, Ju-Yeol;Park, Duck-Shin;Cho, Young-Min;Kwon, Soon-Park;Hwang, Yoon-Ho;Song, Hyung-Jin;Lee, Sang-Bong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, $CO_2$ adsorbent was developed for removing low concentration of $CO_2$ in multiple-use facilities. The efficiency of the adsorbent which was improved selective $CO_2$ adsorption capabilities was evaluated. The pellet type adsorbent was modified from a commercial zeolite with mixing LiOH, binder, additives, and $H_2O$. Column tests showed over 90 % of $CO_2$ was adsorbed within 400min. Chamber tests including batch and continuous types were performed for evaluating the adsorbent module. By batch tests, it was evaluated that about 92% of $CO_2$ was removed within 30 min. By continuous tests, 70% of $CO_2$ was removed within 30 min. It was analyzed that over 2,500 ppm of $CO_2$ was continuously removed as shown chamber tests. The reproducibility tests repeatedly performed for 15 days shows that over 1,000 ppm of $CO_2$ was continuously removed. Adsorption capacity of the developed adsorbent was 5.0mmol $CO_2/g$ adsorbent which was analyzed by TGA. It was estimated that the modified adsorbent was applicable to low $CO_2$ concentration and low temperature of indoor environment.

Reuse of Rice-Hull and Application Technology Development in Waste Water Treatment (왕겨의 재활용 및 하수처리 활용기술 개발)

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • Activated Rice-Hull carbon was developed to remove ammonia compounds in water matrix. Isotherm adsorption tests of ammonia were conducted using a bottle-point technique and column test. Residual ammonia after Jar-Test or passing through the column was determined by Indophenol method, and assessed the removal efficiency for ammonia of the adsorbent. As a result, the adsorption capacity for ammonia of activated racehull carbon was very larger than that of coconut shell carbon, because the rice hull carbon had the higher BET surface area of silicate. The activated racehull carbon is under the development as adsorbent to remove ammonia in drinking water and waste water.

  • PDF

Evaluation for adsorption of low concentration of indoor $CO_2$ adsorption using zeolite and alkali metal (제올라이트 및 알칼리금속을 이용한 실내용 저농도 $CO_2$ 흡착제의 성능 평가)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Cha, Yu-Joung;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.494-503
    • /
    • 2013
  • In this study, $CO_2$ adsorbent was produced for minimizing energy loss due to ventilation within the building. For improved selectivity about low concentration of $CO_2$ in multiple-use facilities, the ball type adsorbent was modified from a commercial zeolite, alumina, alkali metals and activated carbon with mixing LiOH, binder, and $H_2O$. We measured specific surface area, pore characteristic, and crystal structure of the modified adsorbent. Effects of alkalization on the absorptive properties of the adsorbents were investigated. Continuous column tests (2,000 ppm) and batch chamber tests ($4m^3$, 5,000ppm) showed that the modified adsorbent indicated about the selectivity of $CO_2$ more than 9.7% (0.613 mmol/g) compared with ordinary adsorbents and $CO_2$ removal efficiency of 88.8% within l hour, respectively. It was estimated that the modified adsorbent was applicable to indoor environments.

Removal of copper ion from the waste water by Manganese Nodules using fixed bed and column (고정형(固定形) Bed와 컬럼을 이용(利用)한 망간 단괴(團塊)에 의한 폐수(廢水) 중의 구리이온 제법(除去))

  • Park, Kyung-Ho;Nam, Chul-Woo;Kang, Nam-Hee
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.64-68
    • /
    • 2011
  • The typical properties of manganese nodules are its high porosity and high specific surface area and manganese in nodules is existed as ${\delta}$-MnO$_2$. These properties suggest that manganese nodules ran be used as an adsorbent for heavy metal ions. This study investigated the practical applicability for the removal of copper ions in the waste water by manganese nodules as an adsorbent using fixed column and fix bed systems. Manganese nodules of 1kg (size 1-3 cm) can absorb 4.0g Cu in fixed column system and 2.3g Cu in fixed bed system from waste water for 3 hours respectively.

Study of PSA Process for Carbon Dioxide Recovery over Zeolite Adsorbent: Effect of Rinse Rate on Process Performance (제올라이트 흡착제 상에서 이산화탄소 회수를 위한 PSA 공정 연구: 공정성능에 대한 세정유량의 영향)

  • 전종기;박영권;주국택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2004
  • In order to investigate the performance of carbon dioxide PSA over zeolite adsorbent, the present study showed results of isotherm measurement, cyclic operation of 3-bed apparatus, and the corresponding numerical simulation. The experiment data of bed temperature, purity, recovery were matched well with that of numerical simulation. Purity of both gas and adsorbent phase increased rapidly with rinse rate but the degree of increase was retarded for large rinse rate The total amount of adsorbed increased only 10% even if rinse rate was enlarged to 4 times. Optimal rinse rate was 7N㎥/hr in this study. The heating rinse led to augments in recovery and productivity, possibly thanks to ease of description resulting from increased volumetric rinse rate and temperature rise in the column.

A Study on the Method of Science Laboratory Waste Water by Absorbent at the Secondary School (학교 실험 폐수 처리 방안)

  • 장원일
    • Hwankyungkyoyuk
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 1991
  • According to our secondary school curriculum for natural science and technical circles, there be used 353 of chemical reagents including 24 kinds of harmful and toxicant components. At present, most school are discharging their school laboratory waste water without any chemical and physical treatments. So as to solve the environmental problem for water pollution, this study tried to research a kind of adsorbant utilizing saw dust, wasted wood sources and designed the simple processing system using the adsorbent. This adsorbent was made by extracting lignin substances from raw saw dust under the solution of 0.5N-NaOH at the temperature of $100^{\circ}C$. Their metal removed rates was measured not only by processing of column and vessel. but also by comparing the standard solution and real waste water. The results were proved as more than 90(%) of the adsorptive efficiency on the average from Pb, Cd, Cu except Cr(VI)in case of the school experimental waste water soaked in vessels a long with 4g of the adsorbent for 24 hours. The new processing system enables to remove most harmful and toxicant metals by filtering, sedimenting and adsorbing at the low cost.

  • PDF