• Title/Summary/Keyword: Adjoint variable method

Search Result 95, Processing Time 0.032 seconds

Robust Evolutionary Programming Technique for Optimal Control Problems

  • Park, C.;Lee, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.50.2-50
    • /
    • 2001
  • Optimal control problems are notoriously difficult to solve either analytically or numerically except for limited cases of having simple dynamics. Evolutionary programming is a promising method of solving various optimal control problem arising in practice since it does not require the expression of Lagrange´s adjoint system and that it can easily implement the inequality constraints on the control variable, In this paper, evolutionary programming is combined with spline method, so the smoother control profile and the Jumping times could be obtained. The optimal profiles obtained by the proposed method are compared with exact solution if it is available. With more complicated model equation, the proposed method showed better performance than other researchers´. It is demonstrated that the evolutionary programming with spline method can ...

  • PDF

Shape Optimization of Electromagnetic System using Level Set Method (전자기 시스템에서 Level Set Method를 이용한 최적화)

  • Kim, Young-Sun;Choi, Hong-Soon;Park, Il-Han;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.623-624
    • /
    • 2008
  • We present a level set method for numerical shape optimization of electromagnetic systems. The level set method does not only lead to efficient computational schemes, but also is able to handle topological changes such as merging, splitting and even disappearing of connected components. The velocity field on boundaries is obtained by a shape derivative of continuum sensitivity analysis using the material derivative concept and an adjoint variable technique. Two numerical results of dielectric optimization between electrodes showed that the level set method is feasible and effective in solving shape optimization problems of electromagnetic systems.

  • PDF

Identification of Unknown Remanent Magnetization in the Ferromagnetic Ship Hull Utilizing Material Sensitivity Information Combined with Magnetization Modeling

  • Kim, Nam-Kyung;Jeung, Gi-Woo;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • This paper presents a magnetization modeling method combined with material sensitivity information to identify the unknown magnetization distribution of a hull and improve the accuracy of the predicted fields. First, based on the magnetization modeling, the hull surface was divided into three-dimensional sheet elements, where the individual remanent magnetization was assumed to be constant. For a fast search of the optimum magnetization distribution on the hull, a material sensitivity formula containing the first-order gradient information of an objective function was combined with the magnetization modeling method. The feature of the proposed method is that it can provide a stable and accurate field solution, even in the vicinity of the hull. Finally, the validity of the method was tested using a scale model ship.

Electrical Resistivity Tomography for Inverse Problem Using FEM (유한요소법을 이용한 전기 비저항 탐사법의 저항역산)

  • Lim, Sung-Ki;Kim, Min-Kyu;Jung, Hyun-Kyo;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.154-156
    • /
    • 1996
  • A new method for electric resistivity tomography(ERT) is developed for geophysical inverse problems by adapting the sensitivity analysis. The outputs of the potential electrodes are computed using two dimensional finite element method in the wave number space by Fourier transforming the governing equations. The resistance distribution in the region of interests, which makes the computed potential distribution coincide with the measured potential, is found by minimizing the objective function using an optimization method. In this process the sensitivity analysis is introduced in order to compute the derivatives of the objective function. And an adjoint variable method is used to save the computational efforts for sensitivity coefficients.

  • PDF

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

Direct Differentiation Method for Shape Design Sensitivity Analysis of Axisymmetric Elastic Solids by the BEM and Shape Optimization of Turbin Disc (경계요소법에 의한 축대칭 탄성체의 형상설계 민감도해석을 위한 직접미분법과 터빈 디스크의 형상최적설계)

  • Lee, Bu-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1458-1467
    • /
    • 1996
  • A direct differentiationmethod is presented for the shape design sensitivity analysis of axisymmeetric elastic solids. Based on the exisymmetric boundary integralequaiton formulation, a new boundary ntegral equatio for sensitivity analysis is derived by taking meterial derivative to the same integral identity that was used in the adjoint variable melthod. Numerical implementation is performed to show the applicaiton of the theoretical formulation. For a simple example with analytic solution, the sensitivities by present method are compared with analytic sensitivities. As an application to the shape optimization, an optimal shape of a gas turbine disc toinimize the weight under stress constraints is found by incorporating the sensitivity analysis algorithm in an optimizatio program.

Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

Process Optimal Design in Steady-State Metal Forming by Finite Finite Element Method-I Theoretical Considerations (유한요소법을 이용한 정상상태의 소성가공 공정의 최적설계-I - 이론적 고찰)

  • 전만수;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.443-452
    • /
    • 1992
  • 본 연구에서는 소성가공 공정의 최적설계를 위한 새로운 접근 방법이 소개 된다.이방법은 소성가공 공정의 유한요소해석 기술과 기계시스템의 최적설계 기술 에 바탕을 두고 있다. 벌칙 강소성유한요소법, 정상 상태의 소성가공 공정(steady -state metal forming process)을 위한 최적설계 문제의 수식화, 설계민감도의 해석 방법, 설계민감도의 정확성에 관한 고찰, 구배투영법(gradient projection emthod)등 이 본 논문에서 상세하게 소개된다.

A Study on the Stochastic Finite Element Method Based on Variational Approach (변분법을 이용한 확률론적 유한요소법에 관한 연구)

  • Bae, Dong-Myung;Kim, Kyung-Yull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.432-446
    • /
    • 1996
  • A stochastic Hamilton variational principle(SHVP) is formulated for dynamic problems of linear continuum. The SHVP allows incorporation of probabilistic distributions into the finite element analysis. The formulation is simplified by transformation of correlated random variables to a set of uncorrelated random variables through a standard eigenproblem. A procedure based on the Fourier analysis and synthesis is presented for eliminating secularities from the perturbation approach. In addition to, a method to analyse stochastic design sensitivity for structural dynamics is present. A combination of the adjoint variable approach and the second order perturbation method is used in the finite element codes. An alternative form of the constraint functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The algorithms developed can readily be adapted to existing deterministic finite element codes. The numerical results for stochastic analysis by proceeding approach of cantilever, 2D-frame and 3D-frame illustrates in this paper.

  • PDF

Shape Design Sensitivity Analysis and Optimization of Axisymmetric Shell Structures (축대칭 쉘구조물의 형상 설계민감도 해석 및 최적설계)

  • 김인용;곽병만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.98-105
    • /
    • 1993
  • A method for shape design sensitivity analysis for axisymmetric shells of general shapes is developed. The basic approach is to divide the structures into many segments. For each of the segments, the formula for a shallow arch or shell can be applied and the results assembled. To interconnect those segments, the existing sensitivity formula, obtained for a variation only in the direction perpendicular to the plane on which the structure is mapped, has been extended to include a variation normal to the middle surface. The method follows the adjoint variable approach based on the material derivative concept as established in the literature. Numerical examples are taken to illustrate the method and the applicability to practical design problems.

  • PDF