• Title/Summary/Keyword: Adjacent channel interference

Search Result 173, Processing Time 0.024 seconds

Study on Compatibility Analysis between Radio Services (무선통신 업무간 양립성 분석에 관한 연구)

  • Kang, Jeong-Yong;Kim, Jin-Young;Kim, Eun-Cheol;Kim, Jong-Heon;Ryu, Chung-Sang;Oh, Seong-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.122-137
    • /
    • 2007
  • In this paper, compatibility between different radio services or systems is analyzed when they are in adjacent band or co-channel. The first step of the compatibility analysis is establishing an interference scenario. And an interference pobability from an interfering transmitter to a victim receiver is calculated by means of Monte-Carlo simulation techniques. Then the calculated result is compared with the predefined interference criteria, maximum permissible interference probability and we can determine compatibility in accordance with the active interferer density, channel bandwidth, cell radius, distance between interfering transmitter and victim receiver, and duty cycle. It is assumed that Propagation modes are the free space model and extened Hata model.

  • PDF

Interference Mitigation Technique for the Sharing between IMT-Advanced and Fixed Satellite Service

  • Lim, Jae-Woo;Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 2007
  • In this paper, we propose an efficient and robust interference mitigation technique based on a nullsteering multi-user multiple-input multiple-output (MU-MIMO) spatial division multiple access (SDMA) scheme for frequency sharing between IMT-advanced and fixed satellite service (FSS) in the 3400-4200 and 4500-4800 MHz bands. In the proposed scheme, the pre-existing precoding matrix for SDMA unitary precoded (UPC) MIMO proposed by the authors is modified to construct nulls in the spatial spectrum corresponding to the direction angles of the victim FSS earth station (ES). Furthermore, a numerical formula to calculate the power of the interference signal received at the FSS ES when IMT-Advanced base stations (BS) are operated with the interference mitigation technique is presented. This formula can be derived in closed form and is simply implemented with the help of simulation, resulting in significantly reduced time to obtain the solution. Finally, the frequency sharing results are analyzed in the co-channel and adjacent channel with respect to minimum separation distance and direction of FSS earth station (DOE). Simulation results indicate that the proposed mitigation scheme is highly efficient in terms of reducing the separation distance as well as robust against DOE estimation errors.

Interference of FDM-FM Signal upon PSK Signal (PSK 신호에 대한 FDM-FM 신호의 섭간영향)

  • 이형재;이대령;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 1981
  • The effect of wideband FDM-FM signal on binary CPSK signal in an interchannel interference environment has been investigated. A general equation of the bir error rate of binary CPSK signal with cochannel and adjacent channel interference from FDM-FM signal has been derived. The numerical results are given in graphs as the functions of carrier to noise ratio (CNR), carrier to interference ratio(CIR) and normalized carrier separation between PSK and FM signals. The results obtained can be used om desogmomg tje freqiemcy allocation, bandwidths and powers of PSK and FM signals in same radio frequency (RF) bands.

  • PDF

Robust Cognitive-Radio-Based OFDM Architecture with Adaptive Traffic Allocation in Time and Frequency

  • Kim, Nak-Myeong;Kim, Mee-Ran;Kim, Eun-Ju;Shin, Su-Jung;Yu, Hye-In;Yun, Sang-Boh
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.21-32
    • /
    • 2008
  • Cognitive radio (CR) has been proposed as an effective technology for flexible use of the radio spectrum. The interference between primary users and CR users, however, becomes a critical problem when they are using adjacent frequency channels with different transmission power levels. In this paper, a robust CR orthogonal frequency division multiplexing (OFDM) architecture, which can effectively suppress interference to nearby primary users and overcome adjacent channel interference (ACI) to the CR user, is proposed. This new approach is characterized by adaptive data repetition for subcarriers under heavy ACI, and adaptive time spreading for subcarriers near the borders of the CR user's spectrum. The data repetition scheme provides extra power gain against the ACI coming from primary users. Time spreading guarantees an acceptable interference level to nearby primary users. By computer simulation, we demonstrate that, under a CR environment, the proposed CR OFDM architecture outperforms conventional OFDM systems in terms of throughput and BER performance.

  • PDF

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.

Beamforming Strategy Using Adaptive Beam Patterns and Power Control for Common Control Channel in Hierarchical Cell Structure Networks

  • You, Cheol-Woo;Jung, Young-Ho;Cho, Sung-Hyun
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.319-326
    • /
    • 2011
  • Beamforming techniques have been successfully utilized for traffic channels in order to solve the interference problem. However, their use for control channels has not been sufficiently investigated. In this paper, a (semi-) centralized beamforming strategy that adaptively changes beam patterns and controls the total transmit power of cells is proposed for the performance enhancement of the common channel in hierarchical cell structure (HCS) networks. In addition, some examples of its practical implementation with low complexity are presented for two-tier HCS networks consisting of macro and pico cells. The performance of the proposed scheme has been evaluated through multi-cell system-level simulations under optimistic and pessimistic interference scenarios. The cumulative distribution function of user geometry or channel quality has been used as a performance metric since in the case of common control channel the number of outage users is more important than the sum rate. Simulation results confirm that the proposed scheme provides a significant gain compared to the random beamforming scheme as well as conventional systems that do not use the proposed algorithm. Finally, the proposed scheme can be applied simultaneously to several adjacent macro and pico cells even if it is designed primarily for the pico cell within macro cells.

An Satellite Communication Wireless Package System Using Analysis of Channel Interference between ISM band Systems (ISM 대역 시스템간 채널 간섭 분석을 통한 위성 통신 무선 패키지시스템 적용)

  • Ko, Hojeong;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.78-83
    • /
    • 2015
  • In this paper, when WLAN repeater of satellite communication package system as a novel wireless disaster communication network connected to LTE D2D mobile terminal, we analyzed radio channel interference from WLAN and WPAN system of adjacent same ISM band using Monte-Carlo method. In this study, WLAN cell radius was determined using Extended Hata Model considering practical environment, and simulated physical protection distance and density in the dense-mode to minimize interference from WLAN, Bluetooth, and ZigBee. Simulation results, WLAN repeater can be operated with 15 WLAN interferer over 130m distance, 23 Bluetooth interferer over 100m distance, and with 62 ZigBee interferer over 83m distance.

Partial CSI-Based Cooperative Power Allocation in Multi-Cell Dual-Hop MISO Relay Systems (다중-셀 이중-홉 MISO 릴레이 시스템에서 부분 채널 정보를 이용한 협력 전력 할당 기법)

  • Cho, Hee-Nam;Kim, Ah-Young;Lee, Jin-Woo;Lee, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.887-895
    • /
    • 2009
  • This paper proposes a cooperative power allocation with the use of partial channel information (e.g., the average signal-to-noise ratio (SNR) and transmit correlation) in multi-cell dual-hop multi-input single-output (MISO) relay systems. In a dual-hop MISO relay channel, it is desirable to allocate the transmit power between dual-hop links to maximize the end-to-end capacity. We consider the maximization of the end-to-end capacity of a dual-hop MISO relay channel under sum-power constraint. The proposed scheme adaptively allocates the transmit power considering the average channel gain of the target relay and the transmit correlation of the desired and inter-relay interference channel from adjacent relays. It is shown by means of upper-bound analysis that the end-to-end capacity can be maximized by making the angle difference of the principal eigenvectors of the desired and inter-relay interference channel orthogonal in highly-correlated channel environments. Finally, the performance of the proposed scheme is verified by computer simulation.

A implementation of predistorter using the Series Diode Linearizer for RF Amplifiers (RF전력증폭기에 직렬다이오드선형화기를 이용한 전치보상기 구현)

  • Won, Yong-Kyu;Yun, Man-Soo;Lee, Sang-Cheol;Chung, Chan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • In this paper, a predistortion linearizer using series diode is proposed for linearizing the power amplifier in microwave radio systems. The power amplifier should be operated near saturation region to achieve high efficiency. But at this region, amplitude and phase distortions of the amplifier remarkably increase with the increase of input power and cause a significant adjacent channel interference. The linearizer is composed of a series diode with a parallel capacitor, which provides positive amplitude and negative phase deviations with the increasing input power. This type of linearizer using the nonlinearity of diode has improved the C/I(Carrier to Intermodulation Distortion) ratio well. By applying this linearizer to two-tone 880MHz power amplifier, adjacent channel leakage power is improved up to 5dBm.

A Study on Feedforward System for IMT-2000

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.505-513
    • /
    • 2006
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping. because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt. the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.