• Title/Summary/Keyword: Adjacency graph

Search Result 59, Processing Time 0.022 seconds

SOME INEQUALITIES FOR THE HARMONIC TOPOLOGICAL INDEX

  • MILOVANOVIC, E.I.;MATEJIC, M.M.;MILOVANOVIC, I.Z.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.307-315
    • /
    • 2018
  • Let G be a simple connected graph with n vertices and m edges, with a sequence of vertex degrees $d_1{\geq}d_2{\geq}{\cdots}{\geq}d_n$ > 0. A vertex-degree topological index, referred to as harmonic index, is defined as $H={\sum{_{i{\sim}j}}{\frac{2}{d_i+d_j}}$, where i ~ j denotes the adjacency of vertices i and j. Lower and upper bounds of the index H are obtained.

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

Building Extraction from Lidar Data and Aerial Imagery using Domain Knowledge about Building Structures

  • Seo, Su-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2007
  • Traditionally, aerial images have been used as main sources for compiling topographic maps. In recent years, lidar data has been exploited as another type of mapping data. Regarding their performances, aerial imagery has the ability to delineate object boundaries but omits much of these boundaries during feature extraction. Lidar provides direct information about heights of object surfaces but have limitations with respect to boundary localization. Considering the characteristics of the sensors, this paper proposes an approach to extracting buildings from lidar and aerial imagery, which is based on the complementary characteristics of optical and range sensors. For detecting building regions, relationships among elevation contours are represented into directional graphs and searched for the contours corresponding to external boundaries of buildings. For generating building models, a wing model is proposed to assemble roof surface patches into a complete building model. Then, building models are projected and checked with features in aerial images. Experimental results show that the proposed approach provides an efficient and accurate way to extract building models.

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

A𝛼-SPECTRAL EXTREMA OF GRAPHS WITH GIVEN SIZE AND MATCHING NUMBER

  • Xingyu Lei;Shuchao Li;Jianfeng Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.873-893
    • /
    • 2023
  • In 2017, Nikiforov proposed the A𝛼-matrix of a graph G. This novel matrix is defined as A𝛼(G) = 𝛼D(G) + (1 - 𝛼)A(G), 𝛼 ∈ [0, 1], where D(G) and A(G) are the degree diagonal matrix and adjacency matrix of G, respectively. Recently, Zhai, Xue and Liu [39] considered the Brualdi-Hoffman-type problem for Q-spectra of graphs with given matching number. As a continuance of it, in this contribution we consider the Brualdi-Hoffman-type problem for A𝛼-spectra of graphs with given matching number. We identify the graphs with given size and matching number having the largest A𝛼-spectral radius for ${\alpha}{\in}[{\frac{1}{2}},1)$.

Expander graphs based on 60/102 NBCA and its application (60/102 NBCA에 기반을 둔 확장그래프들과 그 응용)

  • Kim, Han-Doo;Cho, Sung-Jin;Choi, Un-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1939-1946
    • /
    • 2011
  • Expander graphs are useful in the design and analysis of communication networks. Mukhopadhyay et. al introduced a method to generate a family of expander graphs based on nongroup two predecessor single attractor CA(Cellular Automata). In this paper we propose a method to generate a family of expander graphs based on 60/102 Null boundary CA(NBCA) which is a group CA. The spectral gap generated by our method is larger than that of Mukhopadhyay et. al [12]. As an application we give an algorithm which generate one-way functions whose security lies on the combinatorial properties of our expander graphs. the one-way function using d-regular graph generated by the 60/102 NBCA is based on the Goldreich's construction [5].

Face Relation Feature for Separating Overlapped Objects in a 2D Image (2차원영상에서 가려진 물체를 분리하기 위한 면관계 특징)

  • Piljae Song;Park, Hongjoo;Hyungtai Cha;Hernsoo Hahn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.54-68
    • /
    • 2001
  • This paper proposes a new algorithm that detects and separates the occluding and occluded objects in a 2D image. An input image is represented by the attributed graph where a node corresponds to a surface and an arc connecting two nodes describes the adjacency of the nodes in the image. Each end of arc is weighted by relation value which tells the number of edges connected to the surface represented by the node in the opposite side of the arc. In attributed graph, homogeneous nodes pertained to a same object always construct one of three special patterns which can be simply classified by comparison of relation values of the arcs. The experimental results have shown that the proposed algorithm efficiently separates the objects overlapped arbitrarily, and that this approach of separating objects before matching operation reduces the matching time significantly by simplifying the matching problem of overlapped objects as the one of individual single object.

  • PDF

A Distributed Vertex Rearrangement Algorithm for Compressing and Mining Big Graphs (대용량 그래프 압축과 마이닝을 위한 그래프 정점 재배치 분산 알고리즘)

  • Park, Namyong;Park, Chiwan;Kang, U
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1131-1143
    • /
    • 2016
  • How can we effectively compress big graphs composed of billions of edges? By concentrating non-zeros in the adjacency matrix through vertex rearrangement, we can compress big graphs more efficiently. Also, we can boost the performance of several graph mining algorithms such as PageRank. SlashBurn is a state-of-the-art vertex rearrangement method. It processes real-world graphs effectively by utilizing the power-law characteristic of the real-world networks. However, the original SlashBurn algorithm displays a noticeable slowdown for large-scale graphs, and cannot be used at all when graphs are too large to fit in a single machine since it is designed to run on a single machine. In this paper, we propose a distributed SlashBurn algorithm to overcome these limitations. Distributed SlashBurn processes big graphs much faster than the original SlashBurn algorithm does. In addition, it scales up well by performing the large-scale vertex rearrangement process in a distributed fashion. In our experiments using real-world big graphs, the proposed distributed SlashBurn algorithm was found to run more than 45 times faster than the single machine counterpart, and process graphs that are 16 times bigger compared to the original method.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.

A Bottleneck Search Algorithm for Digraph Using Maximum Adjacency Merging Method (최대 인접 병합 방법을 적용한 방향 그래프의 병목지점 탐색 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.129-139
    • /
    • 2012
  • Given digraph network $D=(N,A),n{\in}N,a=c(u,v){\in}A$ with source s and sink t, the maximum flow from s to t is determined by cut (S, T) that splits N to $s{\in}S$ and $t{\in}T$ disjoint sets with minimum cut value. The Ford-Fulkerson (F-F) algorithm with time complexity $O(NA^2)$ has been well known to this problem. The F-F algorithm finds all possible augmenting paths from s to t with residual capacity arcs and determines bottleneck arc that has a minimum residual capacity among the paths. After completion of algorithm, you should be determine the minimum cut by combination of bottleneck arcs. This paper suggests maximum adjacency merging and compute cut value method is called by MA-merging algorithm. We start the initial value to S={s}, T={t}, Then we select the maximum capacity $_{max}c(u,v)$ in the graph and merge to adjacent set S or T. Finally, we compute cut value of S or T. This algorithm runs n-1 times. We experiment Ford-Fulkerson and MA-merging algorithm for various 8 digraph. As a results, MA-merging algorithm can be finds minimum cut during the n-1 running times with time complexity O(N).