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SOME INEQUALITIES FOR THE HARMONIC TOPOLOGICAL

INDEX
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Abstract. Let G be a simple connected graph with n vertices and m
edges, with a sequence of vertex degrees d1 ≥ d2 ≥ · · · ≥ dn > 0. A

vertex-degree topological index, referred to as harmonic index, is defined
as H =

∑
i∼j

2
di+dj

, where i ∼ j denotes the adjacency of vertices i and

j. Lower and upper bounds of the index H are obtained.
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1. Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em}, be a simple con-
nected graph with n vertices and m edges. Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0,
and d(e1) ≥ d(e2) ≥ · · · ≥ d(em) > 0, sequences of vertex and edge degrees,
respectively. If i-th and j-th vertices (ei and ej edges) are adjacent, we write
i ∼ j (ei ∼ ej). In addition, we use the following notation: ∆ = d1, δ = dn,
∆e = d(e1) + 2, δe = d(em) + 2, ∆e2 = d(e2) + 2, δe2 = d(em−1) + 2. As usual,
L(G) denotes a line graph.

Gutman and Trinajstić [8] introduced two vertex-degree topological indices,
named as the first, and the second Zagreb index, M1 and M2, defined as

M1 = M1(G) =

n∑
i=1

d2
i and M2 = M2(G) =

∑
i∼j

didj .

The first Zagreb index can be also expressed as (see [4])

M1 =
∑
i∼j

(di + dj). (1)

Received May 7, 2017. Revised December 6, 2017. Accepted January 13, 2018. ∗Corresponding

author.

c© 2018 Korean SIGCAM and KSCAM.

307
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Details on the first Zagreb index and its applications can be found in [1, 2, 3, 7,
9, 10, 11].

Zhou and Trinajstić [26] defined general sum-connectivity index Hα, as

Hα = Hα(G) =
∑
i∼j

(di + dj)
α, (2)

where α is an arbitrary real number.
Here we are concerned with two special cases of the invariant Hα. These are

sum-connectivity index X, defined in [25] as

X = X(G) =
∑
i∼j

1√
di + dj

, (3)

and harmonic index H [6]

H = H(G) =
∑
i∼j

2

di + dj
. (4)

In this paper we state some new inequalities that set up upper and lower
bounds for the invariant H. For more details of harmonic index see in [12, 13,
14, 19, 20, 22, 23, 24].

2. Preliminaries

In this section we recall some results for the invariant H and real number
sequences that will be used in the subsequent considerations.

In [19] Rodriguez and Sigarreta determined the upper bound for the index H
in terms of invariant M1 and graph parameters m, ∆ and δ

H ≤ m2

2M1

(√
∆

δ
+

√
δ

∆

)2

, (5)

with equality holding if G is a regular graph.
Ilić [13] and Xu [22] independently obtained the following inequality

H ≥ 2m2

M1
, (6)

with equality if and only if di + dj is constant for each pair of adjacent vertices
i and j.

Let p = (pi), and a = (ai), i = 1, 2, . . . ,m, be two non-negative real number
sequences with the properties

p1 + p2 + · · ·+ pm = 1 and 0 < r ≤ ai ≤ R < +∞.

In [18] (see also [16]) Rennie proved that

m∑
i=1

piai + rR

m∑
i=1

pi
ai
≤ r +R, (7)
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with equality if and only if for arbitrary k, 1 ≤ k ≤ m− 1, holds R = a1 = · · · =
ak ≥ ak+1 = · · · = am = r, or R = a1 = · · · = am = r.

In [21] (see also [17]) the following was proved:

Let p = (pi), i = 1, 2, . . . ,m, be positive real number sequence, and a = (ai)
and b = (bi), i = 1, 2, . . . ,m, sequences of non-negative real numbers of similar
monotonicity. Denote with

Tm(a, b; p) =

m∑
i=1

pi

m∑
i=1

piaibi −
m∑
i=1

piai

m∑
i=1

pibi.

Then

Tm(a, b; p) ≥ Tm−1(a, b; p). (8)

The inequality Tm(a, b; p) ≥ 0 is well-known Chebyshev inequality (see for
example [16]).

3. Main results

In the following theorem we prove the inequality that establishes upper bound
for H in terms of m, ∆e, δe and M1.

Theorem 3.1. Let G be a simple connected graph with n vertices and m ≥ 2
edges. Then

H ≤ 2(m(∆e + δe)−M1)

∆eδe
. (9)

Equality holds if and only if L(G) is a regular graph, or for arbitrary k, 1 ≤ k ≤
m−1, holds ∆e = d(e1)+2 = · · · = d(ek)+2 ≥ d(ek+1)+2 = · · · = d(em)+2 = δe.

Proof. For pi = 1
m , ai = d(ei) + 2, i = 1, 2, . . . ,m, R = d(e1) + 2 = ∆e, and

r = d(em) + 2 = δe, inequality (7) becomes

1

m

m∑
i=1

(d(ei) + 2) +
∆eδe
m

m∑
i=1

1

d(ei) + 2
≤ ∆e + δe. (10)

According to (1) and (4) topological indices M1 and H can be expressed as

M1 =

m∑
i=1

(d(ei) + 2) and H =

m∑
i=1

2

d(ei) + 2
. (11)

From (10) and (11) we have

2M1 + ∆eδeH ≤ 2m(∆e + δe), (12)

wherefrom (9) is obtained.
Equality in (7) holds if and only if R = a1 = · · · = am = r, or for arbitrary

k, 1 ≤ k ≤ m − 1, holds R = a1 = · · · = ak ≥ ak+1 = · · · = am = r. Therefore
equality in (9) holds if and only if L(G) is a regular graph, or for arbitrary k,
1 ≤ k ≤ m − 1, holds ∆e = d(e1) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 = · · · =
d(em) + 2 = δe. �
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Corollary 3.2. Let G be a simple connected graph with n vertices and m ≥ 2
edges. Then

H ≤ m2

2M1

(√
∆e

δe
+

√
δe
∆e

)2

. (13)

Equality holds if L(G) is regular.

Proof. According to the arithmetic-geometric mean inequality for non-negative
real numbers (see for example [16]), from (12) we get

2
√

2∆eδeHM1 ≤ 2M1 + ∆eδeH ≤ 2m(∆e + δe),

wherefrom the inequality (13) is obtained. �

Corollary 3.3. Let G be a simple connected graph with n vertices and m ≥ 2
edges. Then

H ≤ nm2

8m2 + n(∆− δ)2

(√
∆e

δe
+

√
δe
∆e

)2

.

Equality holds if G is regular.

Proof. The inequality is obtained from (13) and inequality

M1 ≥
4m2

n
+

1

2
(∆− δ)2,

which was proved in [15]. �

Corollary 3.4. Let G be a simple connected graph with n vertices and m ≥ 2
edges. Then

H ≤ 2m(n(∆e + δe)− 4m)

n∆eδe
.

Equality holds if G is regular.

Proof. This inequality can be obtained according to (9) and inequality

M1 ≥
4m2

n
, (14)

proved in [5]. �

Remark 3.1. The function f(x) = x + 1
x is increasing for x ≥ 1. Since 2δ ≤

δe ≤ ∆e ≤ 2∆, we have 1 ≤ ∆e

δe
≤ ∆

δ . According to (13) we get

H ≤ m2

2M1

(√
∆e

δe
+

√
δe
∆e

)2

≤ m2

2M1

(√
∆

δ
+

√
δ

∆

)2

.

Therefore inequality (13) is stronger than (5).
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Remark 3.2. From the definition of invariant H it follows

2m

∆e
≤ H ≤ 2m

δe
,

with equalities if and only if L(G) is regular graph. Since 2m
δe
≤ 2m

2δ ≤ m and
2m
∆e
≥ 2m

2∆ ≥
m
n−1 , these inequalities are stronger than

m

n− 1
≤ H ≤ m,

proved in [20].

By a similar procedure as in case of Theorem 3.1, the following can be proved.

Theorem 3.5. Let G be a simple connected graph with n vertices and m edges.
If m ≥ 3, then

H ≤ 2

∆e
+

2((m− 1)(∆e2 + δe)−M1 + ∆e)

∆e2δe
.

Equality holds if and only if ∆e2 = d(e2) + 2 = · · · = d(em) + 2 = δe, or for
arbitrary k, 2 ≤ k ≤ m− 1, ∆e2 = d(e2) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 =
· · · = d(em) + 2 = δe.

If m ≥ 3, then

H ≤ 2

δe
+

2((m− 1)(∆e + δe2)−M1 + δe)

∆eδe2
.

Equality holds if and only if ∆e = d(e1) + 2 = · · · = d(em−1) + 2 = δe2 , or for
arbitrary k, 1 ≤ k ≤ m − 2, ∆e = d(e1) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 =
· · · = d(em−1) + 2 = δe2 .

If m ≥ 4, then

H ≤ 2(∆e + δe)

∆eδe
+

2((m− 2)(∆e2 + δe2)−M1 + ∆e + δe)

∆e2δe2
.

Equality holds if and only if ∆e2 = d(e2) + 2 = · · · = d(em−1) + 2 = δe2 , or for
arbitrary k, 2 ≤ k ≤ m− 2, ∆e2 = d(e2) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 =
· · · = d(em−1) + 2 = δe2 .

In the next theorem we prove inequality which establishes a connection be-
tween topological indices H and X.

Theorem 3.6. Let G be a simple connected graph with n vertices and m ≥ 2
edges. Then

H ≤ 2((
√

∆e +
√
δe)X −m)√

∆eδe
. (15)

Equality holds if and only if L(G) is regular, or for arbitrary k, 1 ≤ k ≤ m− 1,
holds ∆e = d(e1) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em) + 2 = δe.
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Proof. For

pi =

1√
d(ei) + 2

m∑
i=1

1√
d(ei) + 2

, ai =
√
d(ei) + 2,

i = 1, 2, . . . ,m, r =
√
δe =

√
d(em) + 2, and R =

√
∆e =

√
d(e1) + 2, the

inequality (7) becomes

m
m∑
i=1

1√
d(ei) + 2

+
√

∆eδe

m∑
i=1

1

d(ei) + 2

m∑
i=1

1√
d(ei) + 2

≤
√

∆e +
√
δe. (16)

According to (3), topological index X can be expressed as

X =

m∑
i=1

1√
d(ei) + 2

. (17)

Now, from (11) and (17), the inequality (16) becomes

m

X
+
√

∆eδe
H

2X
≤
√

∆e +
√
δe,

wherefrom (15) is obtained. This completes the proof. �

Corollary 3.7. Let G be a simple connected graph with n vertices and m ≥ 2
edges. Then

H ≤
X2
(√

∆e +
√
δe
)2

2m
√

∆eδe
. (18)

Equality holds if L(G) is a regular graph.

In the following theorem we prove the inequality which is opposite to inequal-
ity (18).

Theorem 3.8. Let G be a simple graph with n vertices and m ≥ 2 edges. Then

H ≥ 2X2

m
+

2

m

(
1√
∆e2

− 1√
∆e

)2

. (19)

Equality holds if and only if L(G) is a regular graph.

Proof. From inequality (8) we have that

Tm(a, b; p) ≥ T2(a, b; p),

i.e.
m∑
i=1

pi

m∑
i=1

piaibi −
m∑
i=1

piai

m∑
i=1

pibi ≥ p1p2(a1 − a2)(b1 − b2).
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For pi = 1, ai = bi = 1√
d(ei)+2

, i = 1, 2, . . . ,m, this inequality transforms into

m

m∑
i=1

1

d(ei) + 2
−

(
m∑
i=1

1√
d(ei) + 2

)2

≥

(
1√

d(e2) + 2
− 1√

d(e1) + 2

)2

,

i.e.

1

2
mH −X2 ≥

(
1√
∆e2

− 1√
∆e

)2

,

wherefrom we obtain the statement of the theorem. �

Since (
1√
∆e2

− 1√
∆e

)2

≥ 0,

we get the following corollary of Theorem 3.8.

Corollary 3.9. Let G be a simple connected graph with n vertices and m ≥ 1
edges. Then

H ≥ 2X2

m
. (20)

Equality holds if and only if L(G) is regular.

Remark 3.3. From (8) we get the Chebyshev inequality Tm(a, b; p) ≥ 0, i.e.

m∑
i=1

pi

m∑
i=1

piaibi ≥
m∑
i=1

piai

m∑
i=1

pibi. (21)

If sequences a = (ai) and b = (bi) are of opposite monotonicity, then the sense
of (21) reverses.

For pi = ai =
√
d(ei) + 2 and bi = 1√

d(ei)+2
, i = 1, 2, . . . ,m, the inequality

(21) becomes (
m∑
i=1

√
d(ei) + 2

)2

≤ mM1. (22)

For pi =
√
d(ei) + 2 and ai = bi = 1√

d(ei)+2
, i = 1, 2, . . . ,m, the inequality

(21) transforms into (
m∑
i=1

√
d(ei) + 2

)
X ≥ m2. (23)

Now, according to (22) and (23), we have that

2X2

m
≥ 2m2

M1
.

Therefore the inequality (20) is stronger than (6).
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1. B. Borovićanin, K.C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and Extremal
graphs, In: Bounds in Chemical Graph Theory – Basics, (I. Gutman, B. Furtula, K.C.
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