SOME INEQUALITIES FOR THE HARMONIC TOPOLOGICAL INDEX

E.I. MILOVANOVIĆ* ${ }^{*}$, M.M. MATEJIĆ, I.Ž. MILOVANOVIĆ

Abstract

Let G be a simple connected graph with n vertices and m edges, with a sequence of vertex degrees $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$. A vertex-degree topological index, referred to as harmonic index, is defined as $H=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}}$, where $i \sim j$ denotes the adjacency of vertices i and j. Lower and upper bounds of the index H are obtained.

AMS Mathematics Subject Classification : 05C50, 15A18. Key words and phrases : Zagreb indices, harmonic index, vertex degree, edge degree.

1. Introduction

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple connected graph with n vertices and m edges. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$, and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)>0$, sequences of vertex and edge degrees, respectively. If i-th and j-th vertices (e_{i} and e_{j} edges) are adjacent, we write $i \sim j\left(e_{i} \sim e_{j}\right)$. In addition, we use the following notation: $\Delta=d_{1}, \delta=d_{n}$, $\Delta_{e}=d\left(e_{1}\right)+2, \delta_{e}=d\left(e_{m}\right)+2, \Delta_{e_{2}}=d\left(e_{2}\right)+2, \delta_{e_{2}}=d\left(e_{m-1}\right)+2$. As usual, $L(G)$ denotes a line graph.

Gutman and Trinajstić [8] introduced two vertex-degree topological indices, named as the first, and the second Zagreb index, M_{1} and M_{2}, defined as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j} .
$$

The first Zagreb index can be also expressed as (see [4])

$$
\begin{equation*}
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right) \tag{1}
\end{equation*}
$$

[^0]Details on the first Zagreb index and its applications can be found in $[1,2,3,7$, $9,10,11]$.

Zhou and Trinajstić [26] defined general sum-connectivity index H_{α}, as

$$
\begin{equation*}
H_{\alpha}=H_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha} \tag{2}
\end{equation*}
$$

where α is an arbitrary real number.
Here we are concerned with two special cases of the invariant H_{α}. These are sum-connectivity index X, defined in [25] as

$$
\begin{equation*}
X=X(G)=\sum_{i \sim j} \frac{1}{\sqrt{d_{i}+d_{j}}} \tag{3}
\end{equation*}
$$

and harmonic index H [6]

$$
\begin{equation*}
H=H(G)=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}} \tag{4}
\end{equation*}
$$

In this paper we state some new inequalities that set up upper and lower bounds for the invariant H. For more details of harmonic index see in [12, 13, $14,19,20,22,23,24]$.

2. Preliminaries

In this section we recall some results for the invariant H and real number sequences that will be used in the subsequent considerations.

In [19] Rodriguez and Sigarreta determined the upper bound for the index H in terms of invariant M_{1} and graph parameters m, Δ and δ

$$
\begin{equation*}
H \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2} \tag{5}
\end{equation*}
$$

with equality holding if G is a regular graph.
Ilić [13] and Xu [22] independently obtained the following inequality

$$
\begin{equation*}
H \geq \frac{2 m^{2}}{M_{1}} \tag{6}
\end{equation*}
$$

with equality if and only if $d_{i}+d_{j}$ is constant for each pair of adjacent vertices i and j.

Let $p=\left(p_{i}\right)$, and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be two non-negative real number sequences with the properties

$$
p_{1}+p_{2}+\cdots+p_{m}=1 \quad \text { and } \quad 0<r \leq a_{i} \leq R<+\infty
$$

In [18] (see also [16]) Rennie proved that

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i}+r R \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq r+R \tag{7}
\end{equation*}
$$

with equality if and only if for arbitrary $k, 1 \leq k \leq m-1$, holds $R=a_{1}=\cdots=$ $a_{k} \geq a_{k+1}=\cdots=a_{m}=r$, or $R=a_{1}=\cdots=a_{m}=r$.

In [21] (see also [17]) the following was proved:
Let $p=\left(p_{i}\right), i=1,2, \ldots, m$, be positive real number sequence, and $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right), i=1,2, \ldots, m$, sequences of non-negative real numbers of similar monotonicity. Denote with

$$
T_{m}(a, b ; p)=\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i}-\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i}
$$

Then

$$
\begin{equation*}
T_{m}(a, b ; p) \geq T_{m-1}(a, b ; p) \tag{8}
\end{equation*}
$$

The inequality $T_{m}(a, b ; p) \geq 0$ is well-known Chebyshev inequality (see for example [16]).

3. Main results

In the following theorem we prove the inequality that establishes upper bound for H in terms of $m, \Delta_{e}, \delta_{e}$ and M_{1}.

Theorem 3.1. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \leq \frac{2\left(m\left(\Delta_{e}+\delta_{e}\right)-M_{1}\right)}{\Delta_{e} \delta_{e}} \tag{9}
\end{equation*}
$$

Equality holds if and only if $L(G)$ is a regular graph, or for arbitrary $k, 1 \leq k \leq$ $m-1$, holds $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Proof. For $p_{i}=\frac{1}{m}, a_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m, R=d\left(e_{1}\right)+2=\Delta_{e}$, and $r=d\left(e_{m}\right)+2=\delta_{e}$, inequality (7) becomes

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)+\frac{\Delta_{e} \delta_{e}}{m} \sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)+2} \leq \Delta_{e}+\delta_{e} \tag{10}
\end{equation*}
$$

According to (1) and (4) topological indices M_{1} and H can be expressed as

$$
\begin{equation*}
M_{1}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right) \quad \text { and } \quad H=\sum_{i=1}^{m} \frac{2}{d\left(e_{i}\right)+2} . \tag{11}
\end{equation*}
$$

From (10) and (11) we have

$$
\begin{equation*}
2 M_{1}+\Delta_{e} \delta_{e} H \leq 2 m\left(\Delta_{e}+\delta_{e}\right) \tag{12}
\end{equation*}
$$

wherefrom (9) is obtained.
Equality in (7) holds if and only if $R=a_{1}=\cdots=a_{m}=r$, or for arbitrary $k, 1 \leq k \leq m-1$, holds $R=a_{1}=\cdots=a_{k} \geq a_{k+1}=\cdots=a_{m}=r$. Therefore equality in (9) holds if and only if $L(G)$ is a regular graph, or for arbitrary k, $1 \leq k \leq m-1$, holds $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=$ $d\left(e_{m}\right)+2=\delta_{e}$.

Corollary 3.2. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2} \tag{13}
\end{equation*}
$$

Equality holds if $L(G)$ is regular.
Proof. According to the arithmetic-geometric mean inequality for non-negative real numbers (see for example [16]), from (12) we get

$$
2 \sqrt{2 \Delta_{e} \delta_{e} H M_{1}} \leq 2 M_{1}+\Delta_{e} \delta_{e} H \leq 2 m\left(\Delta_{e}+\delta_{e}\right)
$$

wherefrom the inequality (13) is obtained.
Corollary 3.3. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
H \leq \frac{n m^{2}}{8 m^{2}+n(\Delta-\delta)^{2}}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2}
$$

Equality holds if G is regular.
Proof. The inequality is obtained from (13) and inequality

$$
M_{1} \geq \frac{4 m^{2}}{n}+\frac{1}{2}(\Delta-\delta)^{2}
$$

which was proved in [15].
Corollary 3.4. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
H \leq \frac{2 m\left(n\left(\Delta_{e}+\delta_{e}\right)-4 m\right)}{n \Delta_{e} \delta_{e}}
$$

Equality holds if G is regular.
Proof. This inequality can be obtained according to (9) and inequality

$$
\begin{equation*}
M_{1} \geq \frac{4 m^{2}}{n} \tag{14}
\end{equation*}
$$

proved in [5].
Remark 3.1. The function $f(x)=x+\frac{1}{x}$ is increasing for $x \geq 1$. Since $2 \delta \leq$ $\delta_{e} \leq \Delta_{e} \leq 2 \Delta$, we have $1 \leq \frac{\Delta_{e}}{\delta_{e}} \leq \frac{\Delta}{\delta}$. According to (13) we get

$$
H \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2} \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2}
$$

Therefore inequality (13) is stronger than (5).

Remark 3.2. From the definition of invariant H it follows

$$
\frac{2 m}{\Delta_{e}} \leq H \leq \frac{2 m}{\delta_{e}}
$$

with equalities if and only if $L(G)$ is regular graph. Since $\frac{2 m}{\delta_{e}} \leq \frac{2 m}{2 \delta} \leq m$ and $\frac{2 m}{\Delta_{e}} \geq \frac{2 m}{2 \Delta} \geq \frac{m}{n-1}$, these inequalities are stronger than

$$
\frac{m}{n-1} \leq H \leq m,
$$

proved in [20].
By a similar procedure as in case of Theorem 3.1, the following can be proved.
Theorem 3.5. Let G be a simple connected graph with n vertices and m edges. If $m \geq 3$, then

$$
H \leq \frac{2}{\Delta_{e}}+\frac{2\left((m-1)\left(\Delta_{e_{2}}+\delta_{e}\right)-M_{1}+\Delta_{e}\right)}{\Delta_{e_{2}} \delta_{e}} .
$$

Equality holds if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$, or for arbitrary $k, 2 \leq k \leq m-1, \Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=$ $\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

If $m \geq 3$, then

$$
H \leq \frac{2}{\delta_{e}}+\frac{2\left((m-1)\left(\Delta_{e}+\delta_{e_{2}}\right)-M_{1}+\delta_{e}\right)}{\Delta_{e} \delta_{e_{2}}}
$$

Equality holds if and only if $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$, or for arbitrary $k, 1 \leq k \leq m-2, \Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=$ $\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

If $m \geq 4$, then

$$
H \leq \frac{2\left(\Delta_{e}+\delta_{e}\right)}{\Delta_{e} \delta_{e}}+\frac{2\left((m-2)\left(\Delta_{e_{2}}+\delta_{e_{2}}\right)-M_{1}+\Delta_{e}+\delta_{e}\right)}{\Delta_{e_{2}} \delta_{e_{2}}}
$$

Equality holds if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$, or for arbitrary $k, 2 \leq k \leq m-2, \Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=$ $\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

In the next theorem we prove inequality which establishes a connection between topological indices H and X.

Theorem 3.6. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \leq \frac{2\left(\left(\sqrt{\Delta_{e}}+\sqrt{\delta_{e}}\right) X-m\right)}{\sqrt{\Delta_{e} \delta_{e}}} \tag{15}
\end{equation*}
$$

Equality holds if and only if $L(G)$ is regular, or for arbitrary $k, 1 \leq k \leq m-1$, holds $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Proof. For

$$
p_{i}=\frac{\frac{1}{\sqrt{d\left(e_{i}\right)+2}}}{\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}}, \quad a_{i}=\sqrt{d\left(e_{i}\right)+2}
$$

$i=1,2, \ldots, m, r=\sqrt{\delta_{e}}=\sqrt{d\left(e_{m}\right)+2}$, and $R=\sqrt{\Delta_{e}}=\sqrt{d\left(e_{1}\right)+2}$, the inequality (7) becomes

$$
\begin{equation*}
\frac{m}{\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}}+\sqrt{\Delta_{e} \delta_{e}} \frac{\sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)+2}}{\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}} \leq \sqrt{\Delta_{e}}+\sqrt{\delta_{e}} \tag{16}
\end{equation*}
$$

According to (3), topological index X can be expressed as

$$
\begin{equation*}
X=\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}} \tag{17}
\end{equation*}
$$

Now, from (11) and (17), the inequality (16) becomes

$$
\frac{m}{X}+\sqrt{\Delta_{e} \delta_{e}} \frac{H}{2 X} \leq \sqrt{\Delta_{e}}+\sqrt{\delta_{e}}
$$

wherefrom (15) is obtained. This completes the proof.
Corollary 3.7. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \leq \frac{X^{2}\left(\sqrt{\Delta_{e}}+\sqrt{\delta_{e}}\right)^{2}}{2 m \sqrt{\Delta_{e} \delta_{e}}} \tag{18}
\end{equation*}
$$

Equality holds if $L(G)$ is a regular graph.
In the following theorem we prove the inequality which is opposite to inequality (18).

Theorem 3.8. Let G be a simple graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \geq \frac{2 X^{2}}{m}+\frac{2}{m}\left(\frac{1}{\sqrt{\Delta_{e_{2}}}}-\frac{1}{\sqrt{\Delta_{e}}}\right)^{2} \tag{19}
\end{equation*}
$$

Equality holds if and only if $L(G)$ is a regular graph.
Proof. From inequality (8) we have that

$$
T_{m}(a, b ; p) \geq T_{2}(a, b ; p)
$$

i.e.

$$
\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i}-\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i} \geq p_{1} p_{2}\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)
$$

For $p_{i}=1, a_{i}=b_{i}=\frac{1}{\sqrt{d\left(e_{i}\right)+2}}, i=1,2, \ldots, m$, this inequality transforms into

$$
m \sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)+2}-\left(\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}\right)^{2} \geq\left(\frac{1}{\sqrt{d\left(e_{2}\right)+2}}-\frac{1}{\sqrt{d\left(e_{1}\right)+2}}\right)^{2}
$$

i.e.

$$
\frac{1}{2} m H-X^{2} \geq\left(\frac{1}{\sqrt{\Delta_{e_{2}}}}-\frac{1}{\sqrt{\Delta_{e}}}\right)^{2}
$$

wherefrom we obtain the statement of the theorem.
Since

$$
\left(\frac{1}{\sqrt{\Delta_{e_{2}}}}-\frac{1}{\sqrt{\Delta_{e}}}\right)^{2} \geq 0
$$

we get the following corollary of Theorem 3.8.
Corollary 3.9. Let G be a simple connected graph with n vertices and $m \geq 1$ edges. Then

$$
\begin{equation*}
H \geq \frac{2 X^{2}}{m} \tag{20}
\end{equation*}
$$

Equality holds if and only if $L(G)$ is regular.
Remark 3.3. From (8) we get the Chebyshev inequality $T_{m}(a, b ; p) \geq 0$, i.e.

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i} \geq \sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i} \tag{21}
\end{equation*}
$$

If sequences $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$ are of opposite monotonicity, then the sense of (21) reverses.

For $p_{i}=a_{i}=\sqrt{d\left(e_{i}\right)+2}$ and $b_{i}=\frac{1}{\sqrt{d\left(e_{i}\right)+2}}, i=1,2, \ldots, m$, the inequality (21) becomes

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \sqrt{d\left(e_{i}\right)+2}\right)^{2} \leq m M_{1} \tag{22}
\end{equation*}
$$

For $p_{i}=\sqrt{d\left(e_{i}\right)+2}$ and $a_{i}=b_{i}=\frac{1}{\sqrt{d\left(e_{i}\right)+2}}, i=1,2, \ldots, m$, the inequality (21) transforms into

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \sqrt{d\left(e_{i}\right)+2}\right) X \geq m^{2} \tag{23}
\end{equation*}
$$

Now, according to (22) and (23), we have that

$$
\frac{2 X^{2}}{m} \geq \frac{2 m^{2}}{M_{1}}
$$

Therefore the inequality (20) is stronger than (6).

Acknowledgement: This paper was supported by the Serbian Ministry of Education, Science and Technological development, Grants No TR33012 and TR32009.

References

1. B. Borovićanin, K.C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and Extremal graphs, In: Bounds in Chemical Graph Theory - Basics, (I. Gutman, B. Furtula, K.C. Das, E. Milovanović, I. Milovanović, Eds.), Mathematical Chemistry Monographs, MCM 19, Univ. Kragujevac, Kragujevac, 2017, pp. 67-153.
2. B. Borovićanin, K.h. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
3. K.C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
4. T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
5. C.S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc. 9 (1977) 203-208.
6. S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187-197.
7. I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbie Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014) 39-52.
8. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
9. I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
10. I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
11. I. Gutman, B. Furtula, K.C. Das, E. Milovanović, I. Milovanović, (Eds.), Bounds in Chemical Graph Theory - Basics, Mathematical Chemistry Monographs, MCM 19, Univ. Kragujevac, Kragujevac, 2017.
12. I. Gutman, B. Furtula, K.C. Das, E. Milovanović, I. Milovanović, (Eds.), Bounds in Chemical Graph Theory - Mainstreams, Mathematical Chemistry Monographs, MCM 20, Univ. Kragujevac, Kragujevac, 2017.
13. A. Ilić, Note on the harmonic index of a graph, Ars. Comb. 128 (2016), 295-299.
14. J. Liu, Q. Zhang, Remarks on harmonic index of graphs, Util. Math. 88 (2012) 281-285.
15. E.I. Milovanović, I. Ž. Milovanović, Sharp bounds for the first Zagreb index and first Zagreb coindex, Miskolc Math. Notes 16 (2) (2015) 1017-1024.
16. D.S. Mitrinović, P.M. Vasić, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
17. D.S. Mitrinović, P.M. Vasić, History, variations and generalisations of the Čebyšev inequality and the question of some priorities, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 461-497 (1974), 1-30.
18. B.C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963) 442-448.
19. J.M. Rodriguez, J.M. Sigarreta, The harmonic index, In: Bounds in Chemical Graph Theory - Basics, (I. Gutman, B. Furtula, K.Ch. Das, E. Milovanović, I. Milovanović, Eds.), Mathematical Chemistry Monographs, MCM 19, Univ. Kragujevac, Kragujevac, 2017, pp. 229-281.
20. K. Sayehvand, M. Rostami, Futher results on harmonic index and some new relations between harmonic index and other topological indices, J. Math. Comput. Sci. 11 (2014), 123-136.
21. P.M. Vasić, R.Ž. Djordjević, Čebyšev inequality for convex sets, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 412-460 (1973), 17-20.
22. X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012), 2013-2018.
23. L. Zhong, K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627-642.
24. B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. 56 (2006) 571-578.
25. B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 12521270.
26. B. Zhou, N. Trinajstić, On general sum-connecivity index, J. Math. Chem. 47 (2010), 210-218.
E.I. Milovanović received Ph.D in Computer Science from Faculty of Electronic Engineering, University of Niš, Serbia. She is full professor at the Faculty of Electronic Engineering, Department of Computer Science. Her research interests include computer architecture, parallel computing and graph theory.

Department of Computer Science, Faculty of Electronic Engineering, University of Niš, Serbia.
e-mail: ema@elfak.ni.ac.rs
M.M. Matejić received Ph.D from Faculty of Science, University of Kragujevac, Serbia. He is currently assistant professor at the Faculty of Electronic Engineering, Niš, Department of Mathematics. His research interests are numerical analysis and graph theory.
Department of Mathematics, Faculty of Electronic Engineering, University of Niš, Serbia. e-mail: marjan.matejic@elfak.ni.ac.rs
I.Ž. Milovanović received Ph.D from Faculty of Electronic Engineering, University of Niš, Serbia. He is full professor at the Faculty of Electronic Engineering, Department of Mathematics. His research interests are discrete mathematics, graph theory, analytical inequalities and parallel computation.
Department of Mathematics, Faculty of Electronic Engineering, University of Niš, Serbia. e-mail: igor@elfak.ni.ac.rs

[^0]: Received May 7, 2017. Revised December 6, 2017. Accepted January 13, 2018. *Corresponding author.
 (c) 2018 Korean SIGCAM and KSCAM.

