• 제목/요약/키워드: Adipose tissue-derived

검색결과 155건 처리시간 0.029초

HA/TCP 골이식재상에 이식된 지방유래 줄기세포의 골모세포로의 분화 및 골형성에 대한 연구 (BONE REGENERATION WITH ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELL AND HA/TCP)

  • 임재석;권종진;장현석;이의석;정유민;이태형;박정균
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권2호
    • /
    • pp.97-106
    • /
    • 2010
  • Aim of the study: An alternative source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Adipose tissue could be processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). This study was performed to confirm the availability of ATSCs in bone tissue engineering. Materials amp; Methods: In this study, adipose tissue-derived mesenchymal stem cell was extracted from the liposuctioned abdominal fat of 24-old human and cultivated, and the stem cell surface markers of CD 105 and SCF-R were confirmed by immunofluorescent staining. The proliferation of bone marrow mesenchymal stem cell and ATSCs were compared, and evaluated the osteogenic differentiation of ATSCs in a specific osteogenic induction medium. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific BMP-2, ALP, Cbfa-1, Osteopontin and osteocalcin were confirmed by RT-PCR. With differentiation of ATSCs, calcium concentration was assayed, and osteocalcin was evaluated by ELISA (Enzyme-linked immunosorbant assay). The bone formation by 5-week implantation of HA/TCP block loaded with bone marrow mesenchymal stem cells and ATSCs in the subcutaneous pocket of nude mouse was evaluated by histologic analysis. Results: ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. ATSCs could be easily identified through fluorescence microscopy, and bone formation in vivo was confirmed by using ATSC-loaded HA/TCP scaffold. Conclusions: The present results show that ATSCs have an ability to differentiate into osteoblasts and formed bone in vitro and in vivo. So ATSCs may be an ideal source for further experiments on stem cell biology and bone tissue engineering.

High-fat diet alters the thermogenic gene expression to β-agonists or 18-carbon fatty acids in adipocytes derived from the white and brown adipose tissue of mice

  • Seonjeong Park;Seung A Ock;Yun Jeong Park;Yoo-Hyun Lee;Chan Yoon Park;Sunhye Shin
    • Journal of Nutrition and Health
    • /
    • 제57권2호
    • /
    • pp.171-184
    • /
    • 2024
  • Purpose: Although activating thermogenic adipocytes is a promising strategy to reduce the risk of obesity and related metabolic disorders, emerging evidence suggests that it is difficult to induce adipocyte thermogenesis in obesity. Therefore, this study aimed to investigate the regulation of adipocyte thermogenesis in diet-induced obesity. Methods: Adipose progenitor cells were isolated from the white and brown adipose tissues of control diet (CD) or high-fat diet (HFD) fed mice, and fully differentiated white and brown adipocytes were treated with β-agonists or 18-carbon fatty acids for β-adrenergic activation or peroxisome proliferator-activated receptor (PPAR) activation. Results: Compared to the CD-fed mice, the expression of uncoupling protein 1 (Ucp1) was lower in the white adipose tissue of the HFD-fed mice; however, this was not observed in the brown adipose tissue. The expression of peroxisome proliferator-activated receptor gamma (Pparg) was lower in the brown adipose progenitor cells isolated from HFD-fed mice than in those isolated from the CD-fed mice. Norepinephrine (NE) treatment exerted lesser effect on peroxisome proliferator-activated receptor-γ coactivator (Pgc1a) upregulation in white adipocytes derived from HFD-fed mice than those derived from CD-fed mice. Regardless which 18-carbon fatty acids were treated, the expression levels of thermogenic genes including Ucp1, Pgc1a, and positive regulatory domain zinc finger region protein 16 (Prdm16) were higher in the white adipocytes derived from HFD-fed mice. Oleic acid (OLA) and γ-linolenic acid (GLA) upregulated Pgc1a expression in white adipocytes derived from HFD-fed mice. Brown adipocytes derived from HFD-fed mice had higher expression levels of Pgc1a and Prdm16 compared to their counterparts. Conclusion: These results indicate that diet-induced obesity may downregulate brown adipogenesis and NE-induced thermogenesis in white adipocytes. Also, HFD feeding may induce thermogenic gene expression in white and brown primary adipocytes, and OLA and GLA could augment the expression levels.

자가기질혈관분획을 이용한 수지골 결손 환자의 치료 (Treatment of Phalangeal Bone Defect Using Autologous Stromal Vascular Fraction from Lipoaspirated Tissue)

  • 정태원;지이화;김덕우;동은상;윤을식
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.438-444
    • /
    • 2011
  • Purpose: Adipose-derived stromal cells (ASCs) are readily harvested from lipoaspirated tissue or subcutaneous adipose tissue fragments. The stromal vascular fraction (SVF) is a heterogeneous set of cell populations that surround and support adipose tissue, which includes the stromal cells, ASCs, that have the ability to differentiate into cells of several lineages and contains cells from the microvasculature. The mechanisms that drive the ASCs into the osteoblast lineage are still not clear, but the process has been more extensively studied in bone marrow stromal cells. The purpose of this study was to investigate the osteogenic capacity of adipose derived SVF cells and evaluate bone formation following implantation of SVF cells into the bone defect of human phalanx. Methods: Case 1 a 43-year-old male was wounded while using a press machine. After first operation, segmental bone defects of the left 3rd and 4th middle phalanx occurred. At first we injected the SVF cells combined with demineralized bone matrix (DBM) to defected 4th middle phalangeal bone lesion. We used P (L/DL)LA [Poly (70L-lactide-co-30DL-lactide) Co Polymer P (L/DL)LA] as a scaffold. Next, we implanted the SVF cells combined with DBM to repair left 3rd middle phalangeal bone defect in sequence. Case 2 was a 25-year-old man with crushing hand injury. Three months after the previous surgery, we implanted the SVF cells combined with DBM to restore right 3rd middle phalangeal bone defect by syringe injection. Radiographic images were taken at follow-up hospital visits and evaluated radiographically by means of computerized analysis of digital images. Results: The phalangeal bone defect was treated with autologous SVF cells isolated and applied in a single operative procedure in combination with DBM. The SVF cells were supported in place with mechanical fixation with a resorbable macroporous sheets acting as a soft tissue barrier. The radiographic appearance of the defect revealed a restoration to average bone density and stable position of pharyngeal bone. Densitometric evaluations for digital X-ray revealed improved bone densities in two cases with pharyngeal bone defects, that is, 65.2% for 4th finger of the case 1, 60.5% for 3rd finger of the case 1 and 60.1% for the case 2. Conclusion: This study demonstrated that adipose derived stromal vascular fraction cells have osteogenic potential in two clinical case studies. Thus, these reports show that cells from the SVF cells have potential in many areas of clinical cell therapy and regenerative medicine, albeit a lot of work is yet to be done.

Effect of Phorbol 12-Myristate 13-Acetate on the Differentiation of Adipose-Derived Stromal Cells from Different Subcutaneous Adipose Tissue Depots

  • Song, Jennifer K.;Lee, Chang Hoon;Hwang, So-Min;Joo, Bo Sun;Lee, Sun Young;Jung, Jin Sup
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.289-296
    • /
    • 2014
  • Human adipose-tissue-derived stromal cells (hADSCs) are abundant in adipose tissue and can differentiate into multi-lineage cell types, including adipocytes, osteoblasts, and chondrocytes. In order to define the optimal harvest site of adipose tissue harvest site, we solated hADSCs from different subcutaneous sites (upper abdomen, lower abdomen, and thigh) and compared their proliferation and potential to differentiate into adipocytes and osteoblasts. In addition, this study examined the effect of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, on proliferation and differentiation of hADSCs to adipocytes or osteoblasts. hADSCs isolated from different subcutaneous depots have a similar growth rate. Fluorescence-activated cell sorting (FACS) analysis showed that the expression levels of CD73 and CD90 were similar between hADSCs from abdomen and thigh regions. However, the expression of CD105 was lower in hADSCs from the thigh than in those from the abdomen. Although the adipogenic differentiation potential of hADSCs from both tissue regions was similar, the osteogenic differentiation potential of hADSCs from the thigh was greater than that of hADSCs from the abdomen. Phorbol 12-myristate 13-acetate (PMA) treatment increased osteogenic differentiation and suppressed adipogenic differentiation of all hADSCs without affecting their growth rate and the treatment of Go6983, a general inhibitor of protein kinase C (PKC) blocked the PMA effect. These findings indicate that the thigh region might be a suitable source of hADSCs for bone regeneration and that the PKC signaling pathway may be involved in the adipogenic and osteogenic differentiation of hADSCs.

Diphlorethohydroxycarmalol of Ishige okamurae and Caffeine Modified the Expression of Extracellular Fibrillars during Adipogenesis of Mouse Subcutaneous Adipose Derived Stem Cell

  • Jeon, Younmi;Song, Siyoung;Kim, Hagju;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권3호
    • /
    • pp.275-287
    • /
    • 2013
  • Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.

Brown preadipocyte transplantation locally ameliorates obesity

  • Takaya, Kento;Matsuda, Naruhito;Asou, Toru;Kishi, Kazuo
    • Archives of Plastic Surgery
    • /
    • 제48권4호
    • /
    • pp.440-447
    • /
    • 2021
  • Background Brown adipose tissue (BAT) is a potential target for anti-obesity treatments. Previous studies have shown that BAT activation causes an acute metabolic boost and reduces adiposity. Furthermore, BAT and BAT-derived cell transplantation reportedly help treat obesity by regulating glucose and fatty acid metabolism. However, since BAT transplantation leads to whole-body weight loss, we speculated that earlier approaches cause a generalized and unnecessary fat tissue loss, including in breast and hip tissues. Methods We transplanted white adipose tissue-derived or BAT-derived preadipocytes prepared from C57BL/6 mice into one side of the inguinal fat pads of an obese mouse model (db/db mice) to examine whether it would cause fat loss at the peri-transplant site (n=5 each). The same volume of phosphate-buffered saline was injected as a control on the other side. Six weeks after transplantation, the inguinal fat pad was excised and weighed. We also measured the concentrations of glucose, triglycerides, fatty acids, and total cholesterol in the peripheral blood. Results BAT-derived preadipocytes showed abundant mitochondria and high levels of mitochondrial membrane uncoupling protein 1 expression, both in vivo and in vitro, with a remarkable reduction in weight of the inguinal fat pad after transplantation (0.17±0.12 g, P=0.043). Only free fatty acid levels tended to decrease in the BAT-transplanted group, but the difference was not significant (P=0.11). Conclusions Our results suggest that brown adipocytes drive fat degradation around the transplantation site. Thus, local transplantation of BAT-derived preadipocytes may be useful for treating obesity, as well as in cosmetic treatments.

누드 마우스에서 Poly(D,L-lactic-co-glycolic acid) (PLGA) 지지체 내 인체 지방줄기세포의 골성분화 (Osteogenic Differentiation of Human Adipose-derived Stem Cells within PLGA(Poly(D,L-lactic-co-glycolic acid)) Scaffold in the Nude Mouse)

  • 유결;조성돈;변준희;이종원
    • Archives of Plastic Surgery
    • /
    • 제34권2호
    • /
    • pp.141-148
    • /
    • 2007
  • Purpose: The object of this study was to evaluate the development of continuous osteogenic differentiation and bone formation after the subcutaneous implantation of the tissue-engineered bone, in vitro. Methods: Human adipose-derived stem cells were obtained by proteolytic digestion of liposuction aspirates. Adipose-derived stem cells were seeded in PLGA scaffolds after being labeled with PKH26 and cultured in osteogenic differentiation media for 1 month. The PLGA scaffolds with osteogenic stimulated adipose-derived stem cells were implanted in subcutaneous layer of four nude mice. Osteogenesis was assessed by RT-PCR for mRNA of osteopontin and bone sialoprotein(BSP), and immunohistochemistry for osteocalcin, and von Kossa staining for calcification of extracellular matrix at 1 and 2 months. Results: Implanted PLGA scaffold with adipose-derived stem cells were well vascularized, and PLGA scaffolds degraded and were substituted by host tissues. The mRNA of osteopontin and BSP was detected by RT-PCR in both osteogenic stimulation group and also osteocalcin was detected by immunohistochemistry at osteogenic stimulation 1 and 2 months, but no calcified extracellular deposit in von Kossa stain was found in all groups. Conclusion: In vivo, it could also maintain the characteristics of osteogenic differentiation that adipose-derived stem cells within PLGA scaffold after stimulation of osteogenic differentiation in vitro, but there were not normal bone formation in subcutaneous area. Another important factor to consider is in vivo, heterologous environment would have negative effect on bone formation as.[p1]

Cyanidin and Cyanidin-3-O-β-D-glucoside Suppress the Inflammatory Responses of Obese Adipose Tissue by Inhibiting the Release of Chemokines MCP-1 and MRP-2

  • Choe, Mi-Ran;Kang, Ji-Hye;Yoo, Hoon;Yang, Chae-Ha;Kim, Mi-Ok;Yu, Ri-Na;Choe, Suck-Young
    • Preventive Nutrition and Food Science
    • /
    • 제12권3호
    • /
    • pp.148-153
    • /
    • 2007
  • Obesity-induced inflammation plays a crucial role in obesity-related pathologies such as type II diabetes and atherosclerosis. Adipose tissue macrophages and the cell-derived proinflammatory chemokines are key components in augmenting inflammatory responses in obesity. Anthocyanins such as cyanidin and $cyanidin-3-O-{\beta}-D-glucoside$ (C3G) are known to elicit anti-inflammatory activities by suppressing the production of proinflammatory mediators such as tumor necrosis factor alpha and nitric oxide in LPS-stimulated macrophages. In the present study, we investigated whether cyanidin and C3G have the potential to suppress the inflammatory responses of adipose cells. Cyanidin and C3G not only suppressed the migration of RAW 264.7 macrophages induced by mesenteric adipose tissue-conditioned medium, but also inhibited the activation of the cells to produce inflammatory chemokines such as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-related protein-2 (MRP-2) in a dose-dependent manner. Cyanidin and C3G also inhibited the release of MCP-1 and MRP-2 from adipocytes and/or macrophages. These findings suggest that cyanidin and C3G may suppress the inflammatory responses of adipose tissue in obesity.

Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema

  • Cho, Ryeon Jin;Kim, You-Sun;Kim, Ji-Young;Oh, Yeon-Mok
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.79-84
    • /
    • 2017
  • Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysema. ASCs were administered via an intrapleural route. Mice injected with spheroid ASCs showed improved regeneration of lung tissues, increased expression of growth factors such as fibroblast growth factor-2 (FGF2) and hepatocyte growth factor (HGF), and a reduction in proteases with an induction of protease inhibitors when compared with mice injected with dissociated ASCs. Our findings indicate that spheroid ASCs show better regeneration of lung tissues than dissociated ACSs in mice with elastase-induced emphysema.

혈소판 농축재제를 이용한 창상치유의 촉진 (Acceleration of Wound Healing Using Adipose-derived Stem Cell Therapy with Platelet Concentrates: Plateletrich Plasma (PRP) vs. Platelet-rich Fibrin (PRF))

  • 한형민;전여름;나동균;유대현
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.345-350
    • /
    • 2011
  • Purpose: Although platelet-rich plasma (PRP) potentiate the wound healing activity of adipose-derived stem cells (ADSCs), its effect cannot be sustained for a prolonged period of time due to short duration of action. This led us to design and produce platelet-rich fibrin (PRF), in an effort to develop a tool which lasts longer, and apply it on wound healing. Methods: Two symmetrical skin defects were made on the back of seven nude mice. ADSCs were applied to each wound, combined with either PRP or PRF. The wound area was measured over 14 days. By day 16, the wound was harvested and histologic analysis was performed including counting of the blood vessel. Results: The healing rate was more accelerated in PRP group in the first 5 days (p<0.05). However, PRF group surpassed PRP group after 6 days (p<0.05). The average number of blood vessels observed in the PRF group was $6.53{\pm}0.51$, compared with $5.68{\pm}0.71$ for the PRP group. Conclusion: PRF exerts a slow yet pervasive influence over the two-week course of the wound healing process. Thus, PRF is probably more beneficial for promoting the activity of ADSCs for a sustained period of time.