• 제목/요약/키워드: Adipose tissue-derived

검색결과 155건 처리시간 0.023초

배양하지 않은 지방조직세포를 이용한 창상피복 (Clinical Application of Adipose Derived Stromal Cell Autograft for Wound Coverage)

  • 서동린;한승규;전경욱;김우경
    • Archives of Plastic Surgery
    • /
    • 제35권6호
    • /
    • pp.653-658
    • /
    • 2008
  • Purpose: Skin and soft tissue defect is one of the major challenges faced by plastic surgeons. Adipose derived stromal cells, which can be harvested in large quantities with low morbidity, display multilineage mesodermal potential. Therefore, adipose derived stromal cells have been met with a great deal of excitement by the field of tissue engineering. Recently, Adipose derived stromal cells have been isolated and cultured to use soft tissue restoration. In order to apply cultured cells for clinical purpose, however, FDA approved facilities and techniques are required, which may be difficult for a clinician who cultures cells in a laboratory dedicated to research to utilize this treatment for patients. In addition, long culture period is needed. Fortunately, adipose derived stromal cells are easy to obtain in large quantities without cell culture. The purpose of this study is to present a possibility of using uncultured adipose derived stromal cells for wound coverage. Methods: Seven patients who needed skin and soft tissue restoration were included. Five patients had diabetic foot ulcers, 1 patient got thumb amputation, and 1 patient had tissue defect caused by resection of squamous cell carcinoma. The patients' abdominal adipose tissues were obtained by liposuction. The samples were digested with type I collagenase and centrifuged to obtain adipose derived stromal cells. The isolated adipose derived stromal cells were applied over the wounds immediately after the wound debridement. Fibrin was used as adipose derived stromal cells carrier. Occlusive dressing was applied with films and foams and the wounds were kept moist until complete healing. Results: One hundred to one hundred sixty thousand adipose derived stromal cells were isolated per ml aspirated adipose tissue. All patients' wounds were successfully covered with the grafted adipose derived stromal cells in a 17 to 27 day period. No adverse events related to this treatment occurred. Conclusion: The use of uncultured adipose derived stromal cells was found to be safe and effective treatment for wound coverage without donor site morbidity.

지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구 (A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL)

  • 이의석;장현석;권종진;임재석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Development of an effective dissociation protocol for isolating mesenchymal stem cells from bovine intermuscular adipose tissues

  • Jeong Min Lee;Hyun Lee;Seung Tae Lee
    • 한국동물생명공학회지
    • /
    • 제38권1호
    • /
    • pp.10-16
    • /
    • 2023
  • Intermuscular fat is essential for enhancing the flavor and texture of cultured meat. Mesenchymal stem cells derived from intermuscular adipose tissues are a source of intermuscular fat. Therefore, as a step towards developing a platform to derive intermuscular fat from mesenchymal stem cells (MSCs) for insertion between myofibrils in cultured beef, an advanced protocol of intermuscular adipose tissue dissociation effective to the isolation of MSCs from intermuscular adipose tissues was developed in cattle. To accomplish this, physical steps were added to the enzymatic dissociation of intermuscular adipose tissues, and the MSCs were established from primary cells dissociated with physical step-free and step-added enzymatic dissociation protocols. The application of a physical step (intensive shaking up) at 5 minutes intervals during enzymatic dissociation resulted in the greatest number of primary cells derived from intermuscular adipose tissues, showed effective formation of colony forming units-fibroblasts (CFU-Fs) from the retrieved primary cells, and generated MSCs with no increase in doubling time. Thus, this protocol will contribute to the stable supply of good quality adipose-derived mesenchymal stem cells (ADMSCs) as a fat source for the production of marbled cultured beef.

지방기질유래 줄기세포의 골 분화 시 성장인자의 효과 (THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS)

  • 김욱규;최연식;정진섭
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권4호
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인 (Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte)

  • 조혜경
    • 대한임상검사과학회지
    • /
    • 제40권2호
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF

Motor Function Recovery after Adipose Tissue Derived Mesenchymal Stem Cell Therapy in Rats with Cerebral Infarction

  • Kim, Chang-Hwan;Kim, Yang-Woon;Jang, Sung-Ho;Chang, Chul-Hoon;Jung, Jae-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권4호
    • /
    • pp.267-272
    • /
    • 2006
  • Objective : There have been recent reports that mesenchymal stromal cells that are harvested from adipose tissue are able to differentiate into neurons. In the present study, we administered adipose tissue derived stem cells in rats with cerebral infarction in order to determine whether those stem cells could enhance the recovery of motor function. Methods : Cerebral infarction was induced by intraluminal occlusion of middle cerebral artery in rats. The adipose tissue-derived mesenchymal stem cells were harvested from inguinal fat pad and proliferated for 2 weeks in DMEM media. Approximately $1{\times}10^6$ cells were injected intravenously or into subdural space of the peri-lesional area. The rotor rod test was performed at preoperative state[before MCA occlusion], and 1, 2, 3, 4, 6, 8 and 10 weeks after the cell therapy. Results : The motor functions that were assessed by rotor rod test at 1 week of the cell therapy were nearly zero among the experimental groups. However, there was apparent motor function recovery after 2 weeks and 4 weeks of cell injection in intravenously treated rats and peri-lesionaly treated rats, respectively, while there was no significant improvement till 8 weeks in vehicle treated rats. Conclusion : These results demonstrate that the adipose derived stem cell treatment improves motor function recovery in rats with cerebral infarction.

비만에서 adipose tissue 호르몬에 의한 metabolic signaling (Metabolic Signaling by Adipose Tissue Hormones in Obesity)

  • 장영훈
    • 생명과학회지
    • /
    • 제33권3호
    • /
    • pp.287-294
    • /
    • 2023
  • 건강한 adipose tissue는 대사 항상성 통해 비만을 막는데 중요하다고 할 수 있다. Adipose tissue는 포도당과 지질 대사를 통해 에너지 균형에 중요한 역할을 한다. 영양분 상태에 따라, adipose tissue는 지질을 저장하여 커지기도 하고, 지질 분해를 통해 에너지를 소비하기도 한다. 게다가, adipose tissue는 호르몬 분비기관으로 작용이 부각되고 있다. 다양한 adipose tissue 호르몬이 존재하며, metabolic signaling을 통해 다른장기와 조직에 영향을 준다. 예를 들면, adipose tissue에서 분비하는 대표적인 펩타이드 호르몬(adipokine)은 섭식조절을 위해 뇌의 중추신경을 자극한다. 또한 adipocytes도 염증성 cytokines을 분비하여 adipose tissue의 immune cells을 표적으로 한다. 당연하게도, adipocytes는 지질에서 만들어지는 호르몬(lipokine)이 분비되어 특정 수용체와 결합하여 paracrine 및 endocrine으로 영향을 준다. 이러한 adipose tissue 호르몬에 의한 장기 조직 간의 상호작용을 이해하기 위해서는, 세부적인 adipocytes 및 다른 표적 세포에서 metabolic sig- naling이 규명되어야 한다. 그러므로, 과체중이나 비만의 건강하지 못한 adipose tissue에서는 metabolic sig- naling의 비정상적인 조절이 일어난다고 할 수 있다. 새로운 adipose metabolic signaling을 표적으로 하는 치료제는 항 비만 약물개발을 이끌어 낼 수 있다. 본 총설논문은 비만과 대사질환 관점에서 adipose tissue 호르몬과 metabolic signaling의 최신 연구결과를 요약 정리한다.

혈관내피세포 채취의 원천으로 인간 지방조직의 활용 (Use of Human Adipose Tissue as a Source of Endothelial Cells)

  • 박봉욱;하영술;김진현;조희영;정명희;김덕룡;김욱규;김종렬;장중희;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권4호
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

배지 성분에 따른 인간 지방조직기원 CD146 양성 혈관내피세포의 증식 및 기능의 평가 (Proliferation and Functional Activity of Human Adipose Tissue-Derived CD146 Positive Endothelial Cells According to Culture Mediums)

  • 박봉욱;하영술;김진현;조희영;정명희;김덕룡;김신원;김욱규;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권6호
    • /
    • pp.504-510
    • /
    • 2010
  • Purpose: This study was to examine the proliferation and function of the adipose tissue-derived endothelial cells according to different culture medium conditions. Materials and Methods: Adipose tissue-derived CD146 positive endothelial cells were cultured in according to different culture mediums (DMEM culture medium with or without osteogenic inductive agents and EBM-2 culture medium with or without osteogenic inductive agents). The proliferation and function of the adipose tissue-derived endothelial cells was examined in different culture medium conditions. Results: Adipose tissue-derived endothelial cells formed tube-like structures on Matrigel in EBM-2 culture medium with or without osteogenic inductive agents. However, the cells did not form tube-like structures on Matrigel in DMEM medium with or without osteogenic inductive agents. After 24 hours of culture, among the culture medium using EBM-2, the proliferation of the cells were promoted in EBM-2 medium without osteogenic inductive agents than in EBM-2 medium with osteogenic inductive agents. However, 72 hours of culture, the proliferation of the cells were promoted in EBM-2 medium with osteogenic inductive agents than in EBM-2 medium without osteogenic inductive agents. Conclusion: These results suggest that the proliferation and function of the adipose tissue-derived CD146 positive endothelial cells could be maintained in EBM-2 with osteogenic inductive agents.