• Title/Summary/Keyword: Adipose metabolic disease

Search Result 41, Processing Time 0.033 seconds

The Effects of the Sasa Borealis Leaves Extract on Plasma Adiponectin, Resistin, C-Reactive Protein and Homocysteine Levels in High Fat Diet-Induced Obese C57/BL6J Mice (조릿대 잎 추출물이 고지방식이 유도 비만 마우스 (C57/BL6J)의 혈장 Adiponectin, Resistin, C-reactive Protein 및 Homocysteine 농도에 미치는 영향)

  • Kim, Eun-Young;Jung, Eun-Young;Lim, Hyeon-Sook;Heo, Young-Ran
    • Journal of Nutrition and Health
    • /
    • v.40 no.4
    • /
    • pp.303-311
    • /
    • 2007
  • As obesity is known to be related to hyperlipidemia, diabetes and coronary heart disease, and other chronic diseases, many researches have focused on functional food materials showing anti-obesity activity. The adipokines secreted by adipose tissue, resistin and adiponectin are known to play an important role in the pathogenesis of chronic diseases directly. C-reactive protein and homocysteine are molecules regulated by adipose tissue indirectly also relate to the chronic diseases. This study was performed to study of the anti-obesity effects of Sasa borealis in diet-induced obese mice (C57/BL6J). The mice were divided into four group: NFD (Normal fat diet), HFD (High fat diet), BSE (High fat diet containing 5% of 70% ethanol extract of Sasa borealis leaves), BLW (High fat diet containing 5% of water extract of Sasa borealis leaves). The experimental diets were fed for 11 weeks. The final body weight of the mice in the groups of BSE and BLW groups were significantly lower than the HFD group. The effects of weight reduction were due to reduced body fat accumulation. The adiponectin levels are significantly decreased in HFD group compared than NFD group and increased taken by Sasa borealis containing diet. The resistin levels are not significantly different between experimental groups. The CRP and homocyteine levels are significantly higher in HFD group than NFD group and significantly decreased by Sasa borealis containing diet, especially BLW group. These results indicate that orally administered Sasa borealis not only has the effect of reducing the body weight and total fat weight, but preferable effect in adiponectin levels and related molecules as CRP and homocysteine. Therefore we expect the Sasa borealis may have an anti-obesity function and anti-metabolic syndrome effect in diet-induced obese mice.

Effects of Chestnut Inner Shell Extract on 3T3-L1 Preadipocyte Differentiation (율피 추출물이 3T3-L1 지방전구세포 분화에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.266-271
    • /
    • 2010
  • Obesity occurred by energy imbalance, is increasing regardless of race, sex, age, and related to the metabolic syndrome, diabetes and cardiovascular disease. Since adipose tissue plays a critical role in regulating energy homeostasis, understanding of adipogenesis pathway and finding of regulatory mechanism for adipogenesis can be helpful to manage obesity as well as obesity-related diseases. In this study, to investigate the effects of Chestnut Inner Shell(CIS) extract on the adipogenesis in 3T3-L1 preadipocytes, 3T3-L1 preadipocytes were differentiated with adipogenic reagents for 9 days in the absence or presence of CIS extract ranging from 10 - 100 ${\mu}g/m{\ell}$. The effect of CIS extract on 3T3-L1 differentiation was examined by measuring intracelluar lipid droplet and triglyceride contents. CIS extract remarkably inhibited lipid accumulation(about 45% inhibition at 100 ${\mu}g/m{\ell}$ of CIS extract) and slightly decreased triglyceride contents(about 15% decrease at 100 ${\mu}g/m{\ell}$ of CIS extract) in 3T3-L1 preadipocytes at the concentration showing no cytotoxicity. These results demonstrated that CIS extract significantly inhibit adipogenesis and can be used for the regulation of obesity.

Perspectives on the therapeutic potential of short-chain fatty acid receptors

  • Kim, Sunhong;Kim, Jeong-Hoon;Park, Bi Oh;Kwak, Young Shin
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.173-178
    • /
    • 2014
  • There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors.

Anti-Diabetic and Anti-Inflammatory Effects of Purple Corn Extract in High-Fat Diet Induced Obesity Mice (고지방식이 비만 유도 마우스에서 자색옥수수 추출물의 항당뇨 및 항염증 효과)

  • Joung, Hyunchae;Kim, Chai-hee;Lee, Yejoo;Kim, Soon-kwon;Do, Myoung-Sool
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.696-702
    • /
    • 2017
  • Metabolic syndrome, including obesity, glucose intolerance and elevated blood pressure, is related to type 2 diabetes and cardiovascular disease. Previous studies have reported the anti-oxidative, anti-inflammatory and anti-diabetic effects of purple corn extract. We investigated the efficacy of purple corn extract (PC) against high-fat diet (HFD)-induced obesity and glucose intolerance, and examined the underlying mechanisms by analyzing expression of proteins and genes involved in glucose regulation and macrophage infiltration. C57BL/6 mice were fed with normal chow diet (ND), or HFD treated with distilled water (DW, control) or PC, for 10 weeks. Although body weights were similar in the HFD-fed groups, we observed a decrease in the liver and epididymal adipose tissue (EAT) weights, and enhanced glucose tolerance test (GTT) results in the PC group, as compared with DW group. Liver showed increased Akt phosphorylation in the PC-treated mice; however, no changes were observed in the EAT, for all groups. In PC-treated mice, decreased macrophage infiltration was seen in the EAT, with a reduced expression of macrophage marker genes. Finally, proinflammatory cytokine gene expressions were decreased by PC in the EAT, and a modest trend for downregulation was observed in the liver. Hence, we conclude that PC may decrease glucose intolerance by increasing the phosphorylation of Akt and reducing the macrophage infiltration into the EAT.

The Relationships between UCP-1 Polymorphism and the Degree of Obesity or Plasma Lipid Profile in Prepubertal Children (소아에서의 UCP-1 다형성과 비만도 및 혈액 지질수치와의 관련성에 관한 연구)

  • Oh, Hyun-Hee;Shin, Eun-Jung;Lee, Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.767-775
    • /
    • 2008
  • Uncoupling protein-1 (UCP-1) plays a major role in thermogenesis at brown adipose tissues and has been implicated in the pathogenesis of obesity and metabolic disorders. The purpose of this study was to estimate the effects of A-3826G polymorphism in 117 Korean prepubertal children aged 8-11 years olds. Anthropometry by bioelectrical impedance analysis method, plasma lipid profiles by auto-biochemical analyzer and UCP-1 genotyping by PCR-RFLP were done. The frequencies of UCP-1 genotypes were AA; 17.7%, AG; 57.8%, GG; 26.6%. The frequencies of each G allele (55.5%) was similar to Japanese's (49%) and higher than Caucacian's (25%). No correlation UCP-1 polymorphism and BMI (kg/$m^2$) or the degree of obesity described by the relative percentiles of the standard weight according to height in prepubertal children. However, plasma total- and LDL-cholesterol were significantly increased in G allele when sex, age and weight were adjusted. Our results suggested that G allele of UCP-1 gene was stronger risk factors in hyperLDLcholesterolemia than A allele. This impact might be progressed as the precaution against the revalence of obesity based-metabolic disease.

Protective Effects of Curcumin on CCl4-Induced Hepatic Fibrosis with High Fat Diet in C57BL/6 Mice (C57BL/6 마우스에서 고지방 식이와 CCl4로 유발한 간섬유증에 미치는 커큐민의 보호효과)

  • Jekal, Seung-Joo;Min, Byung Woon;Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.251-258
    • /
    • 2015
  • Curcumin, a major polyphenolic compound of turmeric, is well known to prevent non-alcoholic steatohepatitis (NASH) related to obesity. The aim of the study was to investigate the effect of curcumin on hepatic fibrosis induced by carbon tetrachloride ($CCl_4$) in obese mice. $CCl_4$ was administrated in mice fed a normal diet (ND) or a high fat diet (HFD) for 7 weeks together with or without curcumin. It was conducted to examine for metabolic profiles, adipocyte size, and liver fibrosis by serum biochemistry, histology and immunohistochemistry. Also, Apoptosis of hepatic cells was determined by the TUNEL method. Treatment with curcumin significantly lowered the body weight, fasting glucose, serum AST and ALT, and decreased the adipocyte size, the number of macrophage and mast cells in adipose tissue, and collagen deposition in liver tissue in the HFD+$CCl_4$ group compared with the findings of the HFD+$CCl_4$ group. In contrast, treatment with curcumin on the ND+$CCl_4$ group did not show a significant difference except the body weight and mast cell number when compared with the ND+$CCl_4$ group. Furthermore, curcumin significantly reduced the number of parenchymal apoptotic cells, whereas it increased the number of non-parenchymal apoptotic cells, especially resembling an activated hepatic stellate cell in the liver. Taken together, this data suggests that curcumin might be an effective antifibrotic drug for the prevention of liver disease progression in obese mice. Thus, the development of curcumin as a therapy for obesity and liver fibrosis is supported.

Anti-obese Effects and Signaling Mechanisms of Chaenomeles sinensis extracts in 3T3-L1 Preadipocytes and Obese Mice Fed a High-fat Diet (3T3L-1 지방전구세포와 고지방식이로 유도된 비만 마우스 모델에서 모과 추출물의 항비만 효과와 억제 기전)

  • Kim, Da-Hye;Kwon, Bora;Kim, Sang Jun;Kim, HongJun;Jeong, Seung-Il;Yu, Kang-Yeol;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 2017
  • Obesity is one of the most serious health problem because it induced numerous metabolic syndrome and increases the incidence of various disease, including diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. In 3T3-L1 adipocytes, increases in reactive oxygens species (ROS) occur with lipid accumulation. NADPH oxidase, producing superoxide anion, may contribute to the development of obesity-associated insulin resistance and type 2 diabetes. In this study, we elucidated the effect of Chaenomeles sinensis koehne extract (CSE) against the development of obesity and the inhibition mechanisms in 3T3-L1 preadiocytes. CSE decreased triglyceride content and inhibited the expression of adipogenic transcription factors including peroxisome proliferator-activated receptor $(PPAR){\gamma}$, CCAT/enhancer binding protein $(C/EBP){\alpha}$ and sterol regulatory element-binding protein (SREBP-1). In addition, CSE highly increased antioxidant activity in a dose-dependent manner. CSE remarkably reduced intracellular ROS increase and NAD(P)H oxidase activity, NOX1, NOX4, Rac1 protein expression, and phosphorylation of p47phox and p67phox We also studied the effect of CSE on weight gain induced by high-fat diet. The oral treatment of CSE (500 mg/kg, body weight) in diet-induced obese (DIO) mice showed decrease in triglyceride and adipocyte size. Therefore, these results indicate that the effect of CSE on anti-obese effects, adipocyte differentiation and reducing triglyceride contents as well as adipocyte size in obese mice, may be associated with inhibition of NAD(P)H oxidase-induced ROS production and adipose transcription factors. These results showed the potential to inhibit the obesity by CSE treatment through controlling the activation of NAD(P)H oxidase in vitro and in vivo obese model.

Studies on Selective Modulators and Anti-anorexigenic Agents in Korean Red Ginseng (한, 일 고려인삼 심포지움)

  • Hiromichi Okuda;Keizo Sekiya;Hiroshi Masuno;Takeshi Takaku;Kenji Kameda
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.145-252
    • /
    • 1987
  • Isolated rat adipocytes are well known to possess opposite pathways of lipid metabolism: lipolysis and ipogenesis. Both of the metabolism respond to various biologically active substances such as epinephrine, ACTH and insulin. Epinephrine and ACTH stimulate lipolysis and insulin accelerates lipogenesis. Recently, Korean red ginseng powder was found to contain adenosine and an acidic poptide which inhibited epinephrine-induced lipolysis and sl imulated insulin-mediated lipogenesis from added glucose. The acidic peptide is consisted mainly of glutamic acid and glucose. Ginsenosides Rb1 and Re inhibited ACTH-induced lipolysis in isolated rat adipocytes, while they did not affect insulinstimulated lipogenesis, Thus, all these substances extracted from Korean red ginseng exhibited selective modulations toward the opposite metabolic pathways in rat adipocyte; They inhibited the lipolysis but not the lipogenesis. We call these substances"selective modulators". Recently, we isolated a toxic substance named "toxohormone-L " from ascites fluid of patients with various malignant tumors. The toxohormone-L stimulated lipolysis in rat adipocytes and induced anorexia in rats. Both the lipolytic and the anorexigenic actions of toxohormone-L were found to be inhibited by ginsenoside Rb2 in Korean red ginseng. Based on these results, physiological signifi¬cances of these substances in Korean red ginseng were discussed. Pan ax ginseng is a medicinal plant long used in treatment of various pathological states including general complaints such as head ache, shoulder ache, chilly constitution and anorexia in cancer patients, There have been many pharmacological studies on Panax ginseng roots. Petkovllreported that oral administration of an aqueous alcoholic extract of ginseng roots decreased the blood sugar levtl of rabbits. Saito2lreported that Panax ginseng suppressed hyperglycemia induced by epinephrine and high carbohydrate diets. These findings suggest that Panax ginseng roots contain insulin-like substances. Previously, we demonstrated that gin¬seng roots contain an insulin-like peptide which inhibits epinephrine-induced lipolysis and stimulated insulin-mediated lipogenesis. In 1984, we suggested that such an insulin-like substance should be called a selective modulator4). Present investigation describes the details of the selective modulators in ginseng roots. During progressive weight loss in patients with various neoplastic disease, depletion of fat stores have been observed. The depletion of body fat during growth of neoplasms is associated with increase in plasma free fatty acids. Recently, we found that the ascites fluid from patients with hepatoma or ovarian tumor and the pleural fluid from patients with malignant lymphoma elicited fatty acid release in slices of rat adipose tissue in vitro. The lipolytic factor, named"toxohormone-L". was purifed from the ascites fluid of patients with hepatoma. The isolated preparation gave a single band on both disc gel electrophoresis and sodium dodecyl sulfate(SDS)-acrylamide gel electrophoresis in the presence of ${\beta}$-mercaptoethanol. Its molecular weight was determined to be 70,000-75,000 and 65,000 by SDS-acrylamide gel electrophoresis and analytical ultracentrifugation, respectively. Injection of toxohormone-L into the lateral ventricle of rats significantly suppressed food and water intakes. There was at least 5 hr delay between its injection and appearance of its suppressive effect. In the present study, we also tried to find a inhibitory substance toward toxohormone-L from root powder of ginseng.

  • PDF

Betulin Targets Lipin1/2-Meidated P2X7 Receptor as a Therapeutic Approach to Attenuate Lipid Accumulation and Metaflammation

  • Dou, Jia-Yi;Jiang, Yu-Chen;Hu, Zhong-He;Yao, Kun-Chen;Yuan, Ming-Hui;Bao, Xiao-Xue;Zhou, Mei-Jie;Liu, Yue;Li, Zhao-Xu;Lian, Li-Hua;Nan, Ji-Xing;Wu, Yan-Ling
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.246-256
    • /
    • 2022
  • The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 µM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.