• Title/Summary/Keyword: Adipose metabolic disease

Search Result 41, Processing Time 0.025 seconds

Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice

  • Lu, Hsu-Feng;Lai, Yu-Heng;Huang, Hsiu-Chen;Lee, I-Jung;Lin, Lie-Chwen;Liu, Hui-Kang;Tien, Hsiao-Hsuan;Huang, Cheng
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.238-246
    • /
    • 2020
  • Background: Dietary fat has been suggested to be the cause of various health issues. Obesity, hypertension, cardiovascular disease, diabetes, dyslipidemia, and kidney disease are known to be associated with a high-fat diet (HFD). Obesity and associated conditions, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem. Few prospective pharmaceutical therapies that directly target NAFLD are available at present. A Traditional Chinese Medicine, ginseng-plus-Bai-Hu-Tang (GBHT), is widely used by diabetic patients to control glucose level or thirst. However, whether it has therapeutic effects on fat-induced hepatic steatosis and metabolic syndrome remains unclear. Methods: This study was conducted to examine the therapeutic effect of GBHT on fat-induced obesity, hepatic steatosis, and insulin resistance in mice. Results: GBHT protected mice against HFD-induced body weight gain, hyperlipidemia, and hyperglycemia compared with mice that were not treated. GBHT inhibited the expansion of adipose tissue and adipocyte hypertrophy. No ectopic fat deposition was found in the livers of HFD mice treated with GBHT. In addition, glucose intolerance and insulin sensitivity in HFD mice was also improved by GBHT. Conclusion: GBHT prevents changes in lipid and carbohydrate metabolism in a HFD mouse model. Our findings provide evidence for the traditional use of GBHT as therapy for the management of metabolic syndrome.

Tschimganidine reduces lipid accumulation through AMPK activation and alleviates high-fat diet-induced metabolic diseases

  • Min-Seon Hwang;Jung-Hwan Baek;Jun-Kyu Song;In Hye Lee;Kyung-Hee Chun
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.246-251
    • /
    • 2023
  • Obesity increases the risk of mortality and morbidity because it results in hypertension, heart disease, and type 2 diabetes. Therefore, there is an urgent need for pharmacotherapeutic drugs to treat obesity. We performed a screening assay using natural products with anti-adipogenic properties in 3T3-L1 cells and determined that tschimganidine, a terpenoid from the Umbelliferae family, inhibited adipogenesis. To evaluate the anti-obesity effects of tschimganidine in vivo. Mice were fed either a normal chow diet (NFD) or a high-fat chow diet (HFD) with or without tschimganidine for 12 weeks. Treatment with tschimganidine decreased lipid accumulation and adipogenesis, accompanied by reduced expression of adipogenesis and lipid accumulation-related factors. Tschimganidine significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased that of AKT. Depletion of AMPK relieved the reduction in lipid accumulation resulting from tschimganidine treatment. Moreover, tschimganidine administration drastically reduced the weight and size of both gonadal white adipose tissue (WAT) and blood glucose levels in high-fat diet-induced obese mice. We suggest that tschimganidine is a potent anti-obesity agent, which impedes adipogenesis and improves glucose homeostasis. Tschimganidine can then be evaluated for clinical application as a therapeutic agent.

Mentha canadensis attenuates adiposity and hepatic steatosis in high-fat diet-induced obese mice

  • Youngji Han;Ji-Young Choi;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.870-882
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Obesity is a major risk factor for metabolic syndrome, a global public health problem. Mentha canadensis (MA), a traditional phytomedicine and dietary herb used for centuries, was the focus of this study to investigate its effects on obesity. MATERIALS/METHODS: Thirty-five male C57BL/6J mice were randomly divided into 2 groups and fed either a normal diet (ND, n = 10) or a high-fat diet (HFD, n = 25) for 4 weeks to induce obesity. After the obesity induction period, the HFD-fed mice were randomly separated into 2 groups: one group continued to be fed HFD (n = 15, HFD group), while the other group was fed HFD with 1.5% (w/w) MA ethanol extract (n = 10, MA group) for 13 weeks. RESULTS: The results showed that body and white adipose tissue (WAT) weights were significantly decreased in the MA-supplemented group compared to the HFD group. Additionally, MA supplementation enhanced energy expenditure, leading to improvements in plasma lipids, cytokines, hepatic steatosis, and fecal lipids. Furthermore, MA supplementation regulated lipid-metabolism-related enzyme activity and gene expression, thereby suppressing lipid accumulation in the WAT and liver. CONCLUSIONS: These findings indicate that MA has the potential to improve diet-induced obesity and its associated complications, including adiposity, dyslipidemia, hepatic steatosis, and inflammation.

Effects of Low Calorie Diet and Platycodon Grandiflorum Extract on Fatty Acid Binding Protein Expression in Rats with Diet-induced Obesity

  • Park, Yoon-Shin;Cha, Min-Ho;Yoon, Yoo-Sik;Ahn, Hong-Seok
    • Nutritional Sciences
    • /
    • v.8 no.1
    • /
    • pp.3-9
    • /
    • 2005
  • Obesity can be defined as a metabolic disease due to an increased fat accumulation in the body caused by an imbalance of calorie intake and output The prevalence of obesity has increased substantially over the past 2-3 decades in developed and developing countries. The health impact of weight gain is so marked that obesity has now been classified as a major global public health problem In order to investigate the effect of diet conversion and oral administration of Platycodon grandiflorum extracts on the treatment of obesity, male Spraque-Dawley rats were divided into four groups: a group converted to normal diet (Control group), a group maintained high fat (30%) diet (H), and two groups with Platycodon grandiflorum extract added to the previously mentioned two groups. All animals were fed high fat diet for 7 weeks to induce the obesity. Then they were divided as mentioned above. Animals were fed experimental diet and Platycodon grandiflorum extract (150 mg/ml/rat/day) for 7 weeks. Body weight, adipose tissue weight (subcutaneous, epididymal, peritoneal fat pads) and serum lipids (total cholesterol and triglyceride) showed some differences among groups. The Platycodon grandiflorum feeding markedly decreased both body weight and adipose tissue weight in control group compared to H, high fat diet maintaining, group. Platycodon grandiflorum extracts significantly decreased the concentrations of serum lipids compared to H group. Fat cell numbers and sizes were significantly reduced in the oriental medicinal herb extract administrated group. Increased fatty acid binding protein (FABP) expression in high fat diet group was decreased by the dietary conversion to normal diet and the oral administration of Platycodon glandiflorum extracts. In contrast, there was no significant effect on FABP expression in the high fat maintenance group. In this study, the conversion from high fat diet to low fat or normal diet had a beneficial effect on body weight loss and serum lipid profiles. Dietary Platycodon glandiflorum extracts had an additive beneficial effect on the prevention and treatment of obesity.

Discovery of Novel 11β-HSD1 Inhibitors by Pharmacophore-Based Virtual Screening

  • Kim, Nam-Doo;Lee, Youn-Ho;Han, Chang-Kyun;Ahn, Soon-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2365-2368
    • /
    • 2012
  • The $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) enzyme is involved in modulation of glucocorticoid activity within target tissues. This enzyme may contribute to obesity and/or metabolic disease through its action in adipose or liver tissue. Inhibition of $11{\beta}$-HSD1 has major therapeutic potential for glucocorticoid-associated diseases, including obesity, diabetes (wound healing), and muscle atrophy. To develop such therapeutics, we performed a pharmacophore-based virtual screening (VS) for identification of novel $11{\beta}$-HSD1 inhibitors and found that the VS hit compounds show potent inhibition of $11{\beta}$-HSD1 enzyme activity. Further, we present a binding model for active compounds. The proposed pharmacophore may serve as a useful guideline for future design of new chemical entities as $11{\beta}$-HSD1-targeted antidiabetic agents.

The role of myokine Irisin on bone metabolism

  • Lee, Jin-Wook;Kim, Chan-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.97-102
    • /
    • 2019
  • Several studies have recently demonstrated that skeletal muscle is an endocrine organ releasing and expressing myokines acting in an endocrine or paracrine manner. Irisin is a hormene-like myokine induced after physical exercise by muscle fibers. It was primarily recognized as a molecule able to advance the "browning response" in white adipose tissue, however, it has been recetly identified that irisin also has a fundamental role in the control of bone mass. We study evidence for its possible skeletal effects, including the fundamental role that irisin is involved in the control of bone mass, with beneficial effects on geometry and cortical mineral density. As loss of muscle mass and bone density occurs with immobility, metabolic disease and aging, future studies researching the efficacy of irisin in reversing muscle wasting and restoring bone would be important to proving irisin as a molecule that combines helpful effects for treating muscular atrophy and osteoporosis in elderly people.

Insight into the pathogensis of polycystic ovarian syndrome

  • Jung, Yong Wook;Lee, Gun Ho;Han, You Jung;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women, which is characterized by the oligo/anovulation, hyperandrogenism (HA) and polycystic ovarian morphology which are diagnostic criteria. PCOS has diverse clinical aspects in addition to those diagnostic criteria including increased risk for cardiovascular diseases, metabolic syndrome, dyslipidemia, type 2 diabetes and impaired fertility. Because of the heterogeneity of the disease, the pathogenesis of the disease has not been elucidated yet. Therefore, there is no cure for the endocrinopathy. HA and insulin resistance (IR) has been considered two major pillars of the pathogenesis of PCOS. Recent advances in animal studies revealed the critical role of neuroendocrine abnormalities in developing PCOS. Several pathways related to neuroendocrine origin have been investigated such as hypothalamus pituitary ovarian axis, hypothalamus pituitary adrenal axis and hypothalamus pituitary adipose axis. This review summarizes the current knowledge about the role of HA and IR in developing PCOS. In addition, we review the results of recent genome wide association studies for PCOS. This new perspective improves our understanding of the role of neuroendocrine origins in PCOS and suggest a novel potential therapeutic target for the treatment of PCOS.

Isaria sinclairii Extract Reduces Body Weight and Ameliorates Metabolic Abnormalities

  • Ahn, Mi-Young;Kim, Ji-Young;Han, Jae-Woong;Jee, Sang-Duck;Hwang, Jae-Sam;Cho, Sung-Ig;Yun, Eun-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.2
    • /
    • pp.121-126
    • /
    • 2007
  • Obesity is a major risk factor for cardiovascular disease. In our case study using animal models for disease states such as obesity or hypertension, we found that, Isaria sinclairii remarkably reduced body weight and ameliorated metabolic abnormalities in Zucker and SHR rats. Genetically obese (fa/fa) Zucker rats were one animal model chosen for this study. Four groups of rats received a standard diet and were treated orally with the following test samples daily for 8 weeks: saline (negative control), ethanol extracts of I. sinclairii, hot water extract of I. sinclairii, or $Xenical^{(R)}$ (30 mg/kg, positive control). Mild reductions (6.3%) in body weight gain were observed in the groups treated with the hot water extract of I. sinclairii compared to the control after 8 weeks. Interestingly, organ weight was greatly reduced by this Dongchunghacho (I. sinclairii), in parallel with the mild reductions in body weight gain and reductions in abdominal fat (adipose tissue). Also observed was a 4.1 % decrease in the ratio of heart weight/body weight compared to the control group. As a hypertensive animal model, SHR (spontaneously hypertensive rat) and WKY (Wistar Kyoto) rats were also administered these extracts for one month. Treatment with the hot water extract of I. sinclairii caused greater reductions in body weight gain for the SHR group (10.9%) compared to the WKY group's (5.2%). Based on these results, I. sinclairii extracts contain selective action for anti-obesity activity, naturally occurring candidate for regulation of body weight increase, as demonstrated in the present study.

Effects of different cardiorespiratory fitness response to exercise training on cardiovascular disease and adipocytokine in abdominal obesity women (운동 트레이닝을 통한 심폐체력 반응의 차이가 복부비만 여성의 심혈관계 위험요인과 아디포싸이토카인에 미치는 영향)

  • Park, S.H.
    • Exercise Science
    • /
    • v.21 no.1
    • /
    • pp.111-120
    • /
    • 2012
  • The purpose of the study was to assess the effects of different cardiorespiratory fitness response to exercise training on cardiovascular disease and adipocytokine release and gene expression in abdominal obesity women. forty eight middle-age women were divided to a exercise-responder (n=34) group (ERG) and a exercise-nonresponder (n=14) group (ENRG) based on cardiorespiratory fitness after exercise training (12weeks, 1200 kcal/week, moderate-vigorous intensity, walking and jogging). Cardiorespiratory fitness was measured using maximal oxygen uptake with metabolic gas analysis and body composition was determined by bioelectrical impedance. We measured lipid and glucose profiles, blood adipocytokines and adipocytokine genes expression in adipose tissue. Waist girth (p=0.040), and %body fat (p=0.031) were significantly decreased in ERG than ENRG. Triglyceride (p=0.023) and systolic blood pressure (0.046) were significantly decreased in ERG than ENRG. Blood leptin (p=0.022) was significantly decrease in ERG than ENRG but leptin gene expression was decreased both groups (p<0.001). These results show that exercise-responder group improved cardiovascular disease risk factors and adipocytokine more than exercise-nonresponder group after exercise training. Moreover, exercise-nonresponders group show that obese indices and blood leptin and leptin gene expression in adipose tissue were decreased despite the failure to improve fitness. Therefore, regular exercise training seems to give health benefits although the failure to improve fitness.

Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants

  • Roh, Sang-Gun;Suzuki, Yutaka;Gotoh, Takafumi;Tatsumi, Ryuichi;Katoh, Kazuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.