• Title/Summary/Keyword: Adipogenic differentiation

Search Result 268, Processing Time 0.024 seconds

Effects for the New Formulation of Daesiho-tang on adipocyte development and differentiation in 3T3-L1 (대시호탕의 새로운 제형이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향)

  • Choi, Hye-Min;Kim, Se-Jin;Moon, Sung-Ok;Lee, Ji-Beom;Lee, Ha-young;Kim, Jong-Beom;Lee, Hwa-Dong
    • The Korea Journal of Herbology
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • Objectives : Daesiho-tang (DSHT) has been widely used in the treatment of cerebral infarct in traditional medicine. However, there was not report on the anti-obesity-related diseases efficacy of DSHT. In this study, we investigated the effects for the new formulation of DSHT, on the adipocyte differentiation cycle in 3T3-L1 cells. Methods : 3T3-L1 cells were treated with DSHT (50, 100, $200{\mu}g/m{\ell}$) during differentiation for 6 days. Also, the inhibitory effect of DSHT against 3T3-L1 adipogenesis was evaluated in various stage of adipogenesis such as early (0-2day), intermediate (2-4day), and terminal stage (4-6day). The accumulation of lipid droplets was determined by Oil Red O staining. and, the expressions of genes related to adipogenesis were measured by RT-PCR and Western blot analyses. Results : DSHT showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affect cell toxicity as assessed by measuring fat accumulation and adipogenesis. In addition, DSHT significantly reduced the expression levels of several adipocyte marker genes including proliferator activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) and CCAAT/ enhancer-binding $protein-{\alpha}$ ($C/EBP-{\alpha}$). Also, the anti-adipogenic effect of DSHT was strongly limited in the intermediate (2-4 day), terminal stage (4-6 day) of 3T3-L1 adipogenesis. In addition, the DSHT treatment down- regulated mRNA expression levels of $PPAR-{\gamma}$,, $C/EBP-{\alpha}$ in mature 3T3-L1 adipocytes. Conclusions : These results suggest that, the ability of DSHT has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. The new formulation of DSHT may be a promising medicine for the treatment of obesity and related metabolic disorders.

Differential characterization of myogenic satellite cells with linolenic and retinoic acid in the presence of thiazolidinediones from prepubertal Korean black goats

  • Subi, S.;Lee, S.J.;Shiwani, S.;Singh, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Objective: Myogenic satellite cells were isolated from semitendinosus muscle of prepubertal Korean black goat to observe the differential effect of linolenic and retinoic acid in thepresence of thiazolidinediones (TZD) and also to observe the production insulin sensitive preadipocyte. Methods: Cells were characterized for their stemness with cluster of differentiation 34 (CD34), CD13, CD106, CD44, Vimentin surface markers using flow cytometry. Cells characterized themselves as possessing significant (p<0.05) levels of CD13, CD34, CD106, Vimentin revealing their stemness potential. Goat myogenic satellite cells also exhibited CD44, indicating that they possessed a % of stemness factors of adipose lineage apart from their inherent stemness of paxillin factors 3/7. Results: Cells during proliferation stayed absolutely and firmly within the myogenic fate without any external cues and continued to show a significant (p<0.05) fusion index % to express myogenic differentiation, myosin heavy chain, and smooth muscle actin in 2% horse serum. However, confluent myogenic satellite cells were the ones easily turning into adipogenic lineage. Intriguingly, upregulation in adipose specific genetic markers such as peroxisome proliferation-activated receptor ${\gamma}$, adiponectin, lipoprotein lipase, and CCAAT/enhancer binding protein ${\alpha}$ were observed and confirmed in all given treatments. However, the amount of adipogenesis was found to be statistically significant (p<0.01) with linolenic acid as compared to retinoic acid in combination with TZD's. Conclusion: Retinoic acid was found to produce smaller preadipocytes which have been assumed to have insulin sensitization and hence retinoic acid could be used as a potential agent to sensitize tissues to insulin in combination with TZD's to treat diabetic conditions in humans and animals in future.

Long-term Cryopreservation of Mesenchymal Stem Cells Derived from Human Eyelid Adipose and Amniotic Membrane: Maintenance of Stem Cell Characteristics

  • Song, Yeon-Hwa;Park, Se-Ah;Yun, Su-Jin;Yang, Hye-Jin;Yoon, A-Young;Kim, Haek-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Human eyelid adipose-derived stem cells (hEAs) and amniotic mesenchymal stem cells (hAMs) are very valuable sources for the cell therapeutics. Both types of cells have a great proliferating ability in vitro and a multipotency to differentiate into adipocytes, osteoblasts and chondrocytes. In the present study, we evaluated their stem cell characteristics after long-time cryopreservation for 6, 12 and 24 months. When frozen-thawed cells were cultivated in vitro, their cumulative cell number and doubling time were similar to freshly prepared cells. Also they expressed stem cell-related genes of SCF, NANOG, OCT4, and TERT, ectoderm-related genes of NCAM and FGF5, mesoderm/endoderm-related genes of CK18 and VIM, and immune-related genes of HLA-ABC and ${\beta}$2M. Following differentiation culture in appropriate culture media for 2-3 weeks, both types of cells exhibited well differentiation into adipocyte, osteoblast, and chondrocyte, as revealed by adipogenic, osteogenic or chondrogenic-specific staining and related genes, respectively. In conclusion, even after long-term storage hEAs and hAMs could maintain their stem cell characteristics, suggesting that they might be suitable for clinical application based on stem cell therapy.

2, 4-Thiazolidindion Induced Plasticity of Myoblast (C2C12) and Satellite Cells (Porcine) - A Comparative Study

  • Singh, N.K.;Chae, H.S.;Hwang, I.H.;Yoo, Y.M.;Ahn, C.N.;Lee, H.J.;Park, H.J.;Chung, H.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1115-1119
    • /
    • 2007
  • This study was conducted to determine the difference between satellite cells (porcine) and myoblasts (C2C12) in their differentiation under the influence of 2, 4-thiazolidindion. C2C12 myoblast cells and porcine satellite cells (isolated from 10 d old $Landrace{\times}Duroc$ piglets) were grown to absolute confluency. Post confluent cells (day 0) were further exposed to adipogenic induction medium along with 2, 4-thiazolidindion ($8{\mu}M$) for 2 d. Thereafter, cells were exposed to 2, 4-thiazolidindion alone every 2 d till day 10 and analysed. The control was cultured in differentiation medium without any treatment. Increased (p<0.05) expression of transcriptional factors i.e. C/EBP-${\alpha}$ and PPAR-${\gamma}$ and transition of cells to adipocyte morphology was noticed from 2 d and 4 d onwards in satellite cells (Porcine) and myoblasts (C2C12) respectively. Myogenesis was observed to be suppressed completely in case of satellite cells compared to myoblasts in response to 2, 4-thiazolidindion. Pax-7 (transcriptional factor) appeared as a sole entity to satellite cells only, as it was not identified in case of myoblasts. Although both the cells were converting to adipoblasts, the degree of their conversion was different in response to 2, 4-thiazolidindion. Therefore, the hypothesis that satellite cells contribute various domains to the growing myoblasts appeared obscured and found to be dependent on the proliferative energy/or degree of fusion. However, it revealed satellite cells as currency to myoblasts/muscle.

Study of Mori Fructus and Dried Mori Fructus Extracts on the Antioxidant Effect and the Inhibitory Effect on Adipocyte Differentiation (상심자와 건조상심자 추출물의 항산화 효과 및 전지방세포 분화억제 효과에 관한 연구)

  • Kim, Hyung-Gu;Wang, Jing-Hua;Lim, Dong-Woo;Chae, Hee-Sung;Chin, Young-Won;Choi, Han-Seok;Kim, Hojun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.4
    • /
    • pp.1-13
    • /
    • 2014
  • Objectives This study was to investigate the antioxidative capacity, antiobesity effect and anti-diabetes effects of Mori Fructus and dried Mori Fructus in Raw 264.7 cells and 3T3-L1 cells. Methods 3 different types of Mori Fructus extracts (water 100%, ethanol 30%, ethanol 100%) were used in this study. And 3 different types of dried Mori Fructus extracts (water 100%, ethanol 30%, ethanol 100%) were used in this study. Total polyphenol compund, total favonoid compound, DPPH radical scavenging, ROS activity, NO, cell proliferation were measured in the experiment. Expressions of adipogenic transcription factors including $C/EBP-{\alpha}$, $C/EBP-{\beta}$, $PPAR-{\alpha}$, $PPAR-{\gamma}$, $AMPK-{\alpha}$ were analyzed by Real time PCR. Results Mori Fructus extracts measurements are higher than dried Mori Fructus extracts measurements at Total flavonoid compound and total flavonoid compound. Mori Fructus extracts measurements are lower than dried Mori Fructus extracts measurements at DPPH radical scavenging, ROS activity, NO. In RT-PCR analysis, there is a tendency that dried Mori Fructus extracts inhibit the expression of $C/EBP-{\alpha}$, $C/EBP-{\beta}$ genes. In RT-PCR analysis, there is a tendency that dried Mori Fructus extracts promote the expression of $PPAR-{\alpha}$, $PPAR-{\gamma}$, $AMPK-{\alpha}$ genes. Conclusions Mori Fructus is effective on inhibiting the oxidation and dried Mori Fructus is effective on inhibiting the obesity and diabetes.

Gestational Diabetes Affects the Growth and Functions of Perivascular Stem Cells

  • An, Borim;Kim, Eunbi;Song, Haengseok;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Ahn, Tae Gyu;Yang, Se-Ran;Na, Sunghun;Hong, Seok-Ho
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.434-439
    • /
    • 2017
  • Gestational diabetes mellitus (GDM), one of the common metabolic disorders of pregnancy, leads to functional alterations in various cells including stem cells as well as some abnormalities in fetal development. Perivascular stem cells (PVCs) have gained more attention in recent years, for the treatment of various diseases. However, the effect of GDM on PVC function has not been investigated. In our study, we isolated PVCs from umbilical cord of normal pregnant women and GDM patients and compared their phenotypes and function. There is no significant difference in phenotypic expression, response to bFGF exposure and adipogenic differentiation capacity between normal (N)-PVCs and GDM-PVCs. However, when compared with N-PVCs, early passage GDM-PVCs displayed decreased initial rates of cell yield and proliferation as well as a reduced ability to promote wound closure. These results suggest that maternal metabolic dysregulation during gestation can alter the function of endogenous multipotent stem cells, which may impact their therapeutic effectiveness.

Inhibitory Effects of Albizziae Cortex Extracts on Adipocyte Differentiation (합환피 추출물의 지방세포 분화 억제 효과)

  • Lee, Su Ho;Lee, Young Rae;Ryu, Do Gon;Kim, Ha Rim;Kim, Mi Seong;Kim, Byung Sook;Kwon, Kang Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.447-451
    • /
    • 2016
  • In this study, Albizziae Cortex extracts (ACE) have potent effects on adipogenesis and on lipolysis in OP9 cells. There was no cytotoxicity while cells were treated with ACE in designated time intervals, unaffected by various concentrations. In the cells with ACE-treated, increases in fat storage were inhibited, and also confirmed by Oil red O. To understand the underlying mechanism at the molecular level, the effects of ACE were examined on the expression of the genes involved in adipogenesis by using real-time PCR. In this cell model, the mRNA level of adipogenic genes such as peroxisome-proliferator-activated receptors gamma ($PPAR{\gamma}$) and CAAAT/enhancer binding protein alpha ($C/EBP{\alpha}$) were decreased by ACE treatment, comparing with those of control group. Collectively, our data suggest that ACE may have great potential as a novel anti-obesity agent.

Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

  • Rhyu, Jin;Kim, Min Sook;You, Mi-Kyoung;Bang, Mi-Ae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), $5{\mu}g/ml$ insulin and $1{\mu}M$ dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-${\gamma}$ and $C/EBP{\alpha}$ in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

Anti-Obesity and Lipid Metabolism Effects of Ulmus davidiana var. japonica in Mice Fed a High-Fat Diet

  • Lee, Sung-Gyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1011-1021
    • /
    • 2021
  • The root bark of Ulmus davidiana var. japonica (Japanese elm) is used in Korea and other East Asian countries as a traditional herbal remedy to treat a variety of inflammatory diseases and ailments such as edema, gastric cancer and mastitis. For this study, we investigated the lipid metabolism and anti-obesity efficacy of ethyl alcohol extract of Ulmus davidiana var. japonica root bark (UDE). First, HPLC was performed to quantify the level of (+)-catechin, the active ingredient of UDE. In the following experiments, cultured 3T3-L1 pre-adipocytes and high-fat diet (HFD)-fed murine model were studied for anti-obesity efficacy by testing the lipid metabolism effects of UDE and (+)-catechin. In the test using 3T3-L1 pre-adipocytes, treatment with UDE inhibited adipocyte differentiation and significantly reduced the production of adipogenic genes and transcription factors PPARγ, C/EBPα and SREBP-1c. HFD-fed, obese mice were administered with UDE (200 mg/kg per day) and (+)-catechin (30 mg/kg per day) by oral gavage for 4 weeks. Weight gain, epididymal and abdominal adipose tissue mass were significantly reduced, and a change in adipocyte size was observed in the UDE and (+)-catechin treatment groups compared to the untreated control group (***p < 0.001). Significantly lower total cholesterol and triglyceride levels were detected in UDE-treated HFD mice compared to the control, revealing the efficacy of UDE. In addition, it was found that lipid accumulation in hepatocytes was also significantly reduced after administration of UDE. These results suggest that UDE has significant anti-obesity and lipid metabolism effects through inhibition of adipocyte differentiation and adipogenesis.